Mathematics in Computer Science

, Volume 8, Issue 2, pp 175–234 | Cite as

On the Discriminant Scheme of Homogeneous Polynomials



In this paper, the discriminant scheme of homogeneous polynomials is studied in two particular cases: the case of a single homogeneous polynomial and the case of a collection of n − 1 homogeneous polynomials in \({n\geqslant 2}\) variables. In both situations, a normalized discriminant polynomial is defined over an arbitrary commutative ring of coefficients by means of the resultant theory. An extensive formalism for this discriminant is then developed, including many new properties and computational rules. Finally, it is shown that this discriminant polynomial is faithful to the geometry: it is a defining equation of the discriminant scheme over a general coefficient ring k, typically a domain, if \({2\neq 0}\) in k. The case where 2 = 0 in k is also analyzed in detail.


Elimination theory Discriminant of homogeneous polynomials Resultant of homogeneous polynomials Inertia forms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Apéry, F., Jouanolou, J.-P.: Élimination: le cas d’une variable. Hermann, Collection Méthodes (2006)Google Scholar
  2. 2.
    Benoist O.: Degrés d’homogénéité de l’ensemble des intersections complètes singulières. Ann. Inst. Fourier (Grenoble) 62(3), 1189–1214 (2012)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Busé L., Mourrain B.: Explicit factors of some iterated resultants and discriminants. Math. Comp. 78(265), 345–386 (2009)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Bruns, W., Vetter, U.: Determinantal rings. In: Lecture Notes in Mathematics, vol. 1327. Springer, Berlin (1988)Google Scholar
  5. 5.
    Demazure, M.: Résultant, discriminant. Unpublished Bourbaki manuscript, July (1969)Google Scholar
  6. 6.
    Demazure M.: Résultant, discriminant. Enseign. Math. (2) 58(3–4), 333–373 (2012)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Eisenbud, D., Harris, J.: The geometry of schemes. In: Graduate Texts in Mathematics, vol. 197. Springer, New York (2000)Google Scholar
  8. 8.
    Esterov A.: Newton polyhedra of discriminants of projections. Discrete Comput. Geom. 44(1), 96–148 (2010)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Gel’fand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, resultants, and multidimensional determinants. In: Mathematics: Theory & Applications. Birkhäuser Boston Inc., Boston (1994)Google Scholar
  10. 10.
    Hartshorne, R: Algebraic geometry. In: Graduate Texts in Mathematics vol. 52. Springer, New York (1977)Google Scholar
  11. 11.
    Henrici, O: On certain formulæ concerning the theory of discriminants. In: Proceedings of the London Mathematical Society, pp. 104–116, Nov. 12th (1868)Google Scholar
  12. 12.
    Jouanolou J.-P.: Le formalisme du résultant. Adv. Math. 90(2), 117–263 (1991)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Jouanolou, J.-P.: Résultant et résidu de grothendieck. Prépublication IRMA Strasbourg (1992)Google Scholar
  14. 14.
    König J.: Einleitung in die allgemeine Theorie der algebraischen Groessen. Teubner, Leipzig (1903)MATHGoogle Scholar
  15. 15.
    Kronecker L.: Grundzuege einer arithmetischen theorie der algebraischen groessen. J. Math. 92, 1–122 (1882)MATHGoogle Scholar
  16. 16.
    Krull W.: Funktionaldeterminanten und Diskriminanten bei Polynomen in mehreren Unbestimmten. Monatsh. Math. Phys. 48, 353–368 (1939)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Krull W.: Funktionaldeterminanten und Diskriminanten bei Polynomen in mehreren Unbestimmten. II. Monatsh. Math. Phys. 50, 234–256 (1942)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Mertens F.: Ueber die bestimmenden eigenschaften der resultante von n formen mit n veraenderlichen. Sitzungsberichte der Wiener Akademie 93, 527–566 (1886)MATHGoogle Scholar
  19. 19.
    Mertens, F.: Zur theorie der elimination. Sitzungsberichte der Wiener Akademie 108, 1173–1228 and 1344–1386 (1892)Google Scholar
  20. 20.
    Ould Mohamdi, El Khalil: Élimination Réduite. PhD thesis, University of Strasbourg (1988)Google Scholar
  21. 21.
    Ostrowski A.: Beweis der Irreduzibilität der Diskriminante einer algebraischen Form von mehreren Variablen. Math. Z. 4(3–4), 314–319 (1919)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Saito T.: The discriminant and the determinant of a hypersurface of even dimension. Math. Res. Lett. 19(4), 855–871 (2012)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Scheja G., Storch U.: Anisotropic discriminants. Comm. Algebra 36(9), 3543–3558 (2008)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Sylvester. Addition à la note sur une extension de la théorie des résultants algébriques. Comptes Rendus de l’Académie des Sciences. LVIII, 1178–1180 (1864)Google Scholar
  25. 25.
    Sylvester. Sur l’extension de la théorie des résultants algébriques. Comptes Rendus de l’Académie des Sciences. LVIII, 1074–1079 (1864)Google Scholar
  26. 26.
    Zariski O.: Generalized weight properties of the resultant of n + 1 polynomials in n indeterminates. Trans. Am. Math. Soc. 41(2), 249–265 (1937)MathSciNetGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.INRIA Sophia Antipolis-MéditerranéeSophia AntipolisFrance
  2. 2.Université Louis PasteurStrasbourg CedexFrance

Personalised recommendations