Mathematics in Computer Science

, Volume 7, Issue 4, pp 439–454 | Cite as

Formalization and Specification of Geometric Knowledge Objects

Article

Abstract

This paper presents our work on the identification, formalization, structuring, and specification of geometric knowledge objects for the purpose of semantic representation and knowledge management. We classify geometric knowledge according to how it has been accumulated and represented in the geometric literature, formalize geometric knowledge statements by adapting the language of first-order logic, specify knowledge objects with embedded knowledge in a retrievable and extensible data structure, and organize them by modeling the hierarchic structure of relations among them. Some examples of formal specification for geometric knowledge objects are given to illustrate our approach. The underlying idea of the approach has been used successfully for automated geometric reasoning, knowledge base creation, and electronic document generation.

Keywords

Embedded knowledge Formal specification Semantic representation Knowledge management 

Mathematics Subject Classification (2010)

68T30 68P05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chou S., Gao X.: Automated reasoning in geometry. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, pp. 707–749. Elsevier, North Holland (2001)Google Scholar
  2. 2.
  3. 3.
    Kerber, M. (ed.): Management of Mathematical Knowledge. Special issue of Mathematics in Computer Science, vol. 2, no. 2. Birkhäuser, Basel (2008)Google Scholar
  4. 4.
    MathML. http://www.w3.org/Math/. Accessed 1 Nov 2013
  5. 5.
    OpenMath. http://www.openmath.org/. Accessed 1 Nov 2013
  6. 6.
    OMDoc. http://www.omdoc.org/. Accessed 1 Nov 2013
  7. 7.
    MathDox. http://www.mathdox.org/. Accessed 1 Nov 2013
  8. 8.
    NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/. Accessed 1 Nov 2013
  9. 9.
    Miller, B.: Three years of DLMF: web, math and search. In: Carette, J., Aspinall, D., Lange, C., Sojka, P., Windsteiger, W. (eds.) Proceedings of Conference on Intelligent Computer Mathematics, CICM ’13. LNAI, vol. 7961, pp. 288–295. Springer, Berlin (2013)Google Scholar
  10. 10.
    Hypertextual Electronic Library of Mathematics. http://helm.cs.unibo.it/. Accessed 1 Nov 2013
  11. 11.
    MBase: A Mathematical Knowledge Base. http://www.mathweb.org/mbase/. Accessed 1 Nov 2013
  12. 12.
    arXMLiv: Translating the arXiv to XML+MathML. https://trac.kwarc.info/arXMLiv/. Accessed 1 Nov 2013
  13. 13.
    ActiveMath. http://www.activemath.org/. Accessed 1 Nov 2013
  14. 14.
    Wortel TUE. http://wortel.tue.nl/. Accessed 1 Nov 2013
  15. 15.
    Quaresma, P., Janic˘ić, P., Tomasevic, J., Vujosevic-Janicic, M., Tosic, D.: XML-based format for geometry—XML-based Format for descriptions of geometrical constructions and geometrical proofs. Chapter in Communicating Mathematics in Digital Era, pp. 183–197. A K Peters, Wellesley (2008)Google Scholar
  16. 16.
    Janic˘ić, P.: GCLC—a tool for constructive Euclidean geometry and more than that. In: Takayama, N., Iglesias, A. (eds.) Proceedings of the 2nd International Congress on Mathematical Software, ICMS ’06, LNCS, vol. 4151, pp. 58–73. Springer, Berlin (2006)Google Scholar
  17. 17.
    Janic˘ić P.: Geometry constructions language. J. Autom. Reason. 44(1–2), 3–24 (2010)Google Scholar
  18. 18.
    Quaresma, P.: An XML-format for conjectures in geometry. In: Conferences on Intelligent Computer Mathematics, CICM ’12, Work in Progress, 8–13 July 2012, Jacobs University, Bremen, GermanyGoogle Scholar
  19. 19.
    Quaresma, P., Janic˘ić, P.: GeoThms—a web system for Euclidean constructive geometry. In: Proceedings of the 7th Workshop on User Interfaces for Theorem Provers, UITP ’06. Electron. Notes Theor. Comput. Sci. 174(2), 35–48 (2007)Google Scholar
  20. 20.
    Janic˘ić, P., Quaresma, P.: System description: GCLCprover + GeoThms. In: Furbach, U., Shankar, N. (eds.) Proceedings of the 3rd International Joint Conference on Automated Reasoning, IJCAR ’06. LNAI, vol. 4130, pp.145–150. Springer, Berlin (2006)Google Scholar
  21. 21.
  22. 22.
    Egido, S., Hendriks, M., Kreis, Y., Kortenkamp, U., Marquès, D.: i2g Common File Format Final Version. Tech. Rep. D3.10, The Intergeo Consortium (2010)Google Scholar
  23. 23.
    Dynamic Geometry Software Speaking I2geo. http://i2geo.net/xwiki/bin/view/Softwares/. Accessed 1 Nov 2013
  24. 24.
    Intergeo. http://i2geo.net/. Accessed 1 Nov 2013
  25. 25.
    Quaresma, P.: Thousands of geometric problems for geometric theorem provers (TGTP). In: Schreck, P., Narboux, J., Richter-Gebert, J. (eds.) Proceedings of the 8th International Workshop on Automated Deduction in Geometry, ADG ’10. LNAI 6877, pp. 169–181. Springer, Berlin (2011)Google Scholar
  26. 26.
    TGTP. http://hilbert.mat.uc.pt/TGTP/. Accessed 1 Nov 2013
  27. 27.
    Chen, X., Huang, Y., Wang, D.: On the design and implementation of a geometric knowledge base. In: Sturm, T., Zengler, C. (eds.) Proceedings of the 7th International Workshop on Automated Deduction in Geometry, ADG ’08. LNAI 6301, pp. 22–41. Springer, Berlin (2011)Google Scholar
  28. 28.
    Chen, X.: Electronic geometry textbook: a geometric textbook knowledge management system. In: Autexier, S., Calmet, J., Delahaye, D., Ion, P., Rideau, L., Rioboo, R., Sexton, A. (eds.) Proceedings of Conference on Intelligent Computer Mathematics CICM ’10. LNAI, vol. 6167, pp. 278–292. Springer, Berlin (2010)Google Scholar
  29. 29.
    Chen, X., Zhao, T., Wang, D.: GeoText: an intelligent dynamic geometry textbook. In: Proceedings of the 37th International Symposium on Symbolic and Algebraic Computation, ISSAC ’12. ACM Commun. Comput. Algebra 46(4) Issue 182, 171–175 (2012)Google Scholar
  30. 30.
    Chen X., Wang D.: Management of geometric knowledge in textbooks. Data Knowl. Eng. 73, 43–57 (2012)CrossRefGoogle Scholar
  31. 31.
    Kerber, M.: On the Representation of Mathematical Concepts and their Translation into First-Order Logic. Ph.D. thesis, Fachbereich Informatik, Universität Kaiserslautern (1992)Google Scholar
  32. 32.
    Li, W.: Mathematical Logic: Foundations for Information Science. Birkhäuser, Basel (2010). Chinese edition: Science Press, Beijing (2007)Google Scholar
  33. 33.
    Kerber, M., Pollet, M.: On the design of mathematical concepts. In: McKay, B., Slaney, J. (eds.) Proceedings of the 15th Australian Joint Conference on Artificial Intelligence: Advances in Artificial Intelligence, AI ’02. LNAI 2557, p. 716. Springer, Berlin (2002)Google Scholar
  34. 34.
    GeoGebra. http://www.geogebra.org/cms/en/. Accessed 1 Nov 2013
  35. 35.
    Corollary. http://en.wikipedia.org/wiki/Corollary. Accessed 1 Nov 2013
  36. 36.
    Wang, D.: GEOTHER 1.1: handling and proving geometric theorems automatically. In: Winkler, F. (ed.) Proceedings of the 4th International Workshop on Automated Deduction in Geometry, ADG ’02. LNAI, vol. 2930, pp. 194–215. Springer, Berlin (2004)Google Scholar
  37. 37.
    GEOTHER. http://www-polsys.lip6.fr/~wang/GEOTHER/. Accessed 1 Nov 2013
  38. 38.
    Liang T., Wang D.: The design and implementation of a geometric-object-oriented language. Frontiers Comput. Sci. China 1(2), 180–190 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.State Key Laboratory of Software Development Environment, School of Computer Science and EngineeringBeihang UniversityBeijingChina
  2. 2.Laboratoire d’Informatique de Paris 6Université Pierre et Marie Curie, CNRSParis Cedex 05France

Personalised recommendations