Mathematics in Computer Science

, Volume 7, Issue 3, pp 321–339 | Cite as

Improved Agreeing-Gluing Algorithm



Asymptotical complexity of solving a system of sparse algebraic equations over finite fields is studied here. An equation is called sparse if it depends on a bounded number of variables. Finding efficiently solutions to the system of such equations is an underlying hard problem in the cryptanalysis of modern ciphers. New deterministic Improved Agreeing-Gluing Algorithm is introduced. The expected running time of the algorithm on uniformly random instances of the problem is rigorously estimated. The estimate is at present the best theoretical bound on the complexity of solving average instances of the problem. In particular, this is a significant improvement over those in our earlier papers (Semaev, Des Codes Cryptogr 49:47–60, 2008; Semaev, SIAM J Comput 39:388–409 2009). In sparse Boolean equations a gap between the present worst case and the average time complexity of the problem has significantly increased. We formulate Average Time Complexity Conjecture. If proved that will have far-reaching consequences in the field of cryptanalysis and in computing in general.


Finite fields Sparse equations Agreeing-gluing algorithm Random allocations 

Mathematics Subject Classification (2010)

Primary 68Q25 Secondary 94A60 11Y16 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bouillaguet, C., Chen, H.-C. K., Cheng, C.-M., Chou, T., Niederhagen, R., Shamir, A., Yang, B.-Y.: Fast exhaustive search for polynomial systems in F 2. IACR ePrint Archive, report 2010/313Google Scholar
  2. 2.
    Bardet, M., Faugére, J.-C., Salvy, B.: Complexity of Gröbner basis computation for semi-regular overdetermined sequences over F 2 with solutions in F 2. Research report RR–5049, INRIA (2003)Google Scholar
  3. 3.
    Bardet, M., Faugére, J.-C., Salvy, B., Yang, B.-Y.: Asymptotic Behaviour of the Degree of Regularity of Semi-Regular Polynomial Systems. In: MEGA (2005)Google Scholar
  4. 4.
    Buchberger B.: Theoretical basis for the reduction of polynomials to canonical forms. SIGSAM Bull. 39, 19–24 (1976)MathSciNetGoogle Scholar
  5. 5.
    Courant R.: Differential and Integral Calculus, vol. 1. Interscience Publishers, New York (1988)CrossRefGoogle Scholar
  6. 6.
    Courtois, N.T., Bard, G.V.: Algebraic cryptanalysis of the data encryption standard. In: Cryptogr. and Coding, LNCS 4887, pp. 152–169. Springer, New York (2007)Google Scholar
  7. 7.
    Dantsin E., Goerdt A., Hirsch E.A., Kannan R., Kleinberg J.M., Papadimitriou C.H., Raghavan P., Schšning U.: A deterministic (2−2/(k + 1))n algorithm for k-SAT based on local search. Theor. Comput. Sci. 289, 69–83 (2002)CrossRefMATHGoogle Scholar
  8. 8.
    Eén, N., Sörensson, N.: MiniSat home page.
  9. 9.
    Faugère J.-C.: A new efficient algorithm for computing Gršbner bases (F4). J. Pure Appl. Algebra 139, 61–88 (1999)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases without reduction to zero (F5). In: ISSAC 2002, pp. 75–83. ACM Press, New York (2002)Google Scholar
  11. 11.
    Iwama K.: Worst-Case Upper Bounds for kSAT. Bull. EATCS 82, 61–71 (2004)MathSciNetMATHGoogle Scholar
  12. 12.
    Iwama, K., Seto, K., Takai, T., Tamaki, S.: Improved randomised algorithms for 3-SAT. In: ISAAC 2010, Part I, LNCS 6506, pp. 73–84 (2010)Google Scholar
  13. 13.
    Kolchin V., Sevast’yanov A., Chistyakov V.: Random Allocations. Wiley, New York (1978)Google Scholar
  14. 14.
    Lazard, D.: Gröbner-bases, Gaussian elimination and resolution of systems of algebraic equations. In: EUROCAL, pp. 146–156 (1983)Google Scholar
  15. 15.
    MAPLE home page.
  16. 16.
    Papadimitriou, C.H.: On selecting a satisfying truth assignment. In: Proc. FOCS’91, pp. 163–169 (1991)Google Scholar
  17. 17.
    Raddum, H.: Solving non-linear sparse equation systems over GF(2) using graphs. University of Bergen (2004, preprint)Google Scholar
  18. 18.
    Raddum H., Semaev I.: Solving multiple right hand sides linear equations. Des. Codes Cryptogr. 49, 147–160 (2008)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Schöning U.: A probabilistic algorithm for k-Sat based on limited local search and restart. Algoritmica 32, 615–623 (2002)CrossRefMATHGoogle Scholar
  20. 20.
    Semaev I.: On solving sparse algebraic equations over finite fields. Des. Codes Cryptogr. 49, 47–60 (2008)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Semaev I.: Sparse algebraic equations over finite fields. SIAM J. Comput. 39, 388–409 (2009)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Semaev I., Mikus M.: Methods to solve algebraic equations in cryptanalysis. Tatra Mt. Math. Publ. 45, 107–136 (2010)MathSciNetMATHGoogle Scholar
  23. 23.
    Semaev, I.: Improved agreeing-gluing algorithm. 2nd Int. Conf. on Symb. Comp. and Crypt., Royal Holloway, University of London, pp. 73–88 (2010)Google Scholar
  24. 24.
    Semaev I.: Sparse Boolean equations and circuit lattices. Des. Codes Cryptogr. 59, 349–364 (2011)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Schilling, T.E., Raddum, H.: Solving equation systems by agreeing and learning. In: WAIFI 2010, LNCS 6087, pp. 151–165. Springer, Berlin (2010)Google Scholar
  26. 26.
    Wiedemann D.H.: Solving sparse linear equations over finite fields. IEEE Trans. Inf. Theory 32, 54–62 (1986)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Yang B.-Y., Chen J.-M., Courtois N.: On Asymptotic Security Estimates in XL and Gröbner Bases-Related Algebraic Cryptanalysis, LNCS 3269, pp. 401–413. Springer, Berlin (2004)Google Scholar
  28. 28.
    Zakrevskij, A., Vasilkova, I.: Reducing large systems of Boolean equations. 4th Int. workshop on Boolean problems, Freiberg University (2000)Google Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.Department of InformaticsUniversity of BergenBergenNorway

Personalised recommendations