Advertisement

Mathematics in Computer Science

, Volume 7, Issue 3, pp 275–292 | Cite as

On the Complexity of Reconstructing Chemical Reaction Networks

  • Rolf Fagerberg
  • Christoph Flamm
  • Daniel Merkle
  • Philipp Peters
  • Peter F. Stadler
Article
  • 171 Downloads

Abstract

The analysis of the structure of chemical reaction networks is crucial for a better understanding of chemical processes. Such networks are well described as hypergraphs. However, due to the available methods, analyses regarding network properties are typically made on standard graphs derived from the full hypergraph description, e.g. on the so-called species and reaction graphs. However, a reconstruction of the underlying hypergraph from these graphs is not necessarily unique. In this paper, we address the problem of reconstructing a hypergraph from its species and reaction graph and show NP-completeness of the problem in its Boolean formulation. Furthermore we study the problem empirically on random and real world instances in order to investigate its computational limits in practice.

Keywords

NP-completeness Hypergraph reconstruction Reduction Declarative solvers Chemical reaction network 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Limboole. http://fmv.jku.at/limboole/index.html. Institute for Formal Models and Verification (2013)
  2. 2.
    Alon, N., Galil, Z., Margalit, O., Naor, M.: Witnesses for boolean matrix multiplication and for shortest paths. In: Foundations of Computer Science, 1992. Proceedings of 33rd Annual Symposium, pp. 417–426. IEEE (1992)Google Scholar
  3. 3.
    Andersen, J., Flamm, C., Merkle, D., Stadler P.: Maximizing output and recognizing autocatalysis in chemical reaction networks is NP-complete. J. Syst. Chem. 3(1) (2012)Google Scholar
  4. 4.
    Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0. In: Gupta, A., Kroening, D. (eds.) Proceedings of the 8th International Workshop on Satisfiability Modulo Theories (Edinburgh, UK) (2010)Google Scholar
  5. 5.
    Benkö G., Centler F., Dittrich P., Flamm C., Stadler B.M.R., Stadler P.F.: A topological approach to chemical organizations. Alife 15, 71–88 (2009)Google Scholar
  6. 6.
    Biere, A.: Lingeling, plingeling, picosat and precosat at sat race 2010. FMV Report Series Technical Report 10(1) (2010)Google Scholar
  7. 7.
    Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185 (2009)Google Scholar
  8. 8.
    Borenstein, E., Kupiec, M., Feldman, M.W., Ruppin, E.: Large-scale reconstruction and phylogenetic analysis of metabolic environments. Proc. Natl. Acad. Sci. USA 105, 14482–14487 (2008)Google Scholar
  9. 9.
    Capobianco M., Molluzzo J.C.: Examples and counterexamples in graph theory. J. Graph Theory 2(3), 274–274 (1978)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Cottret, L., Wildridge, D., Vinson, F., Barrett, M.P., Charles, H., Sagot, M.-F., Jourdan, F.: Metexplore: a web server to link metabolomic experiments and genome-scale metabolic networks. Nucleic Acids Res. 38(suppl 2), W132–W137 (2010)Google Scholar
  11. 11.
    Craciun G., Feinberg M.: Multiple equilibria in complex chemical reaction networks: II. The species-reaction graph. SIAM J. Appl. Math. 66, 1321–1338 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    De Moura L., Bjørner N.: Z3: An efficient SMT solver. Tools Algorithms Constr. Anal. Syst. (TACAS’) 08(4963), 337–340 (2008)CrossRefGoogle Scholar
  13. 13.
    Domijan M., Kirkilionis M.: Graph theory and qualitative analysis of reaction networks. Netw. Heterog. Media 3, 295–322 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Eén, N., Sörensson, N.: An extensible sat-solver. In: Theory and Applications of Satisfiability Testing, pp. 333–336. Springer, New York (2004)Google Scholar
  15. 15.
    Erdős P., Rényi A.: On the evolution of random graphs. Magyar Tud. Akad. Mat. Kutató Int. Közl 5, 17–61 (1960)Google Scholar
  16. 16.
    Feinberg M.: Complex balancing in general kinetic systems. Arch. Ration. Mech. Anal. 49, 187–194 (1972)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Gallo G., Longo G., Pallottino S., Nguyen S.: Directed hypergraphs and applications. Discrete Appl. Math. 42(2), 177–201 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness (1979)Google Scholar
  19. 19.
    Han J.D.J., Bertin N., Hao T., Goldberg D.S., Berriz G.F., Zhang L.V., Dupuy D., Walhout A.J., Cusick M.E., Roth F.P. et al.: Evidence for dynamically organized modularity in the yeast protein–protein interaction network. Nature 430(6995), 88–93 (2004)CrossRefGoogle Scholar
  20. 20.
    Horn F.J.M., Jackson R.: General mass action kinetics. Arch. Ration. Mech. Anal. 47, 81–116 (1972)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Ivanova A.N.: Conditions for uniqueness of stationary state of kinetic systems, related, to structural scheme of reactions. Kinet. Katal 20, 1019–1023 (1979)Google Scholar
  22. 22.
    Jeong H., Tombor B., Albert R., Oltvai Z., Barabási A.: The large-scale organization of metabolic networks. Nature 407(6804), 651–654 (2000)CrossRefGoogle Scholar
  23. 23.
    Kaltenbach, H.-M.: A unified view on bipartite species-reaction and interaction graphs for chemical reaction networks. Technical Report 1210.0320, arXiv (2012)Google Scholar
  24. 24.
    Klamt S, Haus U-U, Theis F (2009) Hypergraphs and cellular networks. PLoS Comput Biol 5:e1000385Google Scholar
  25. 25.
    Lacroix V., Cottret L., Thébault P., Sagot M.: An introduction to metabolic networks and their structural analysis. IEEE/ACM Trans. Comput. Biol. Bioinforma. 5(4), 594–617 (2008)CrossRefGoogle Scholar
  26. 26.
    McNaught, A., Wilkinson, A.: IUPAC. Compendium of Chemical Terminology, vol. 2. Blackwell Scientific Publications, Oxford (1997)Google Scholar
  27. 27.
    Miettinen P., Mielikainen T., Gionis A., Das G., Mannila H.: The discrete basis problem. IEEE Trans. Knowl. Data Eng. 20(10), 1348–1362 (2008)CrossRefGoogle Scholar
  28. 28.
    Mincheva M., Roussel M.R.: A graph-theoretic method for detecting potential Turing bifurcations. J. Chem. Phys 125, 204102 (2006)CrossRefGoogle Scholar
  29. 29.
    Mincheva M., Roussel M.R.: Graph-theoretic methods for the analysis of chemical and biochemical networks. I. Multistability and oscillations in ordinary differential equation models. J. Math. Biol. 55, 61–68 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Shinar G., Feinberg M.: Concordant chemical reaction networks and the species-reaction graph. Math. Biosci. 241, 1–23 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Skiena, S.: Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica (1990)Google Scholar
  32. 32.
    Sörensson, N., Eén, N.: Minisat v1. 13-a sat solver with conflict-clause minimization. SAT 2005, 53 (2005)Google Scholar
  33. 33.
    Soulé C.: Graphic requirements for multistationarity. ComplexUs 1, 123–133 (2003)CrossRefGoogle Scholar
  34. 34.
    Tanaka R.: Scale-rich metabolic networks. Phys. Rev. Lett. 94(16), 168101 (2005)CrossRefGoogle Scholar
  35. 35.
    Thomas, R.: On the relation between the logical structure of systems and their ability to generate multiple steady states or sustained oscillations. In: Della Dora, J., Demongeot, J., Lacolle, B. (eds.) Numerical Methods in the Study of Critical Phenomena, vol. 9, pp. 180–193. Springer, Berlin (1981)Google Scholar
  36. 36.
    Tseitin, G.: On the complexity of derivation in propositional calculus. In: Slisenko, A.O. (ed.) Structures in Constructive Mathematics and Mathematical Logic, Part II, Seminars in Mathematics (translated from Russian), Steklov Mathematical Institute, pp. 115–125 (1968)Google Scholar
  37. 37.
    Tseitin G.: On the complexity of derivation in propositional calculus. Autom. Reason. Class. Papers Comput. Logic 2, 466–483 (1983)Google Scholar
  38. 38.
    Volpert, A., Ivanova, A.N.: Mathematical models in chemical kinetics. In: Mathematical Modeling, pp. 57–102. Nauka, Moscow (1987) (Russian)Google Scholar
  39. 39.
    Wagner A., Fell D.A.: The small world inside large metabolic networks. Proc. R. Soc. Lond. B 268, 1803–1810 (2001)CrossRefGoogle Scholar
  40. 40.
    Watts D.J., Strogatz S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 409–410 (1998)CrossRefGoogle Scholar
  41. 41.
    Zeigarnik, A.V.: On hypercycles and hypercircuits in hypergraphs. In: Hansen, P., Fowler, P.W., Zheng, M. (eds.) Discrete Mathematical Chemistry, volume 51 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pp. 377–383. American Mathematical Society, Providence (2000)Google Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  • Rolf Fagerberg
    • 1
  • Christoph Flamm
    • 2
  • Daniel Merkle
    • 1
  • Philipp Peters
    • 1
  • Peter F. Stadler
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
  1. 1.Department of Mathematics and Computer ScienceUniversity of Southern DenmarkOdense MDenmark
  2. 2.Institute for Theoretical ChemistryUniversity of ViennaViennaAustria
  3. 3.Bioinformatics Group, Department of Computer ScienceInterdisciplinary Center for BioinformaticsLeipzigGermany
  4. 4.Max Planck Institute for Mathematics in the SciencesLeipzigGermany
  5. 5.Fraunhofer Institute for Cell Therapy and ImmunologyLeipzigGermany
  6. 6.Center for non-coding RNA in Technology and HealthUniversity of CopenhagenFrederiksberg CDenmark
  7. 7.Santa Fe InstituteSanta FeUSA

Personalised recommendations