Advertisement

Mathematics in Computer Science

, Volume 7, Issue 3, pp 255–273 | Cite as

Partial Star Products: A Local Covering Approach for the Recognition of Approximate Cartesian Product Graphs

  • Marc Hellmuth
  • Wilfried Imrich
  • Tomas Kupka
Article

Abstract

This paper is concerned with the recognition of approximate graph products with respect to the Cartesian product. Most graphs are prime, although they can have a rich product-like structure. The proposed algorithms are based on a local approach that covers a graph by small subgraphs, so-called partial star products, and then utilizes this information to derive the global factors and an embedding of the graph under investigation into Cartesian product graphs.

Mathematics Subject Classification (2010)

Primary 68R10 Secondary 05C85 

Keywords

Cartesian product Approximate product Partial star product Product relation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aurenhammer F., Hagauer J., Imrich W.: Cartesian graph factorization at logarithmic cost per edge. Comput. Complex. 2, 331–349 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Chiba N., Nishizeki T.: Arboricity and subgraph listing algorithms. SIAM J. Comput. 14(1), 210–223 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Feigenbaum, J.: Product graphs: some algorithmic and combinatorial results. Technical Report STAN-CS-86-1121, Stanford University, Computer Science, PhD Thesis (1986)Google Scholar
  4. 4.
    Feigenbaum J., Haddad R.A.: On factorable extensions and subgraphs of prime graphs. SIAM J. Discrete Math. 2, 197–218 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Feigenbaum J., Hershberger J., Schäffer A.A.: A polynomial time algorithm for finding the prime factors of Cartesian-product graphs. Discrete Appl. Math. 12, 123–138 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Graham R.L., Winkler P.M.: On isometric embeddings of graphs. Trans. Am. Math. Soc. 288(2), 527–536 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Hagauer J., Žerovnik J.: An algorithm for the weak reconstruction of Cartesian-product graphs. J. Combin. Inf. Syst. Sci. 24, 97–103 (1999)Google Scholar
  8. 8.
    Hammack R., Imrich W., Klavžar S.: Handbook of Product Graphs. Discrete Mathematics and its Applications 2nd edn. CRC Press, Boca Raton (2011)Google Scholar
  9. 9.
    Hellmuth M.: A local prime factor decomposition algorithm. Discrete Math. 311(12), 944–965 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hellmuth M., Imrich W., Klöckl W., Stadler P.F.: Approximate graph products. Eur. J. Combin. 30, 1119–1133 (2009)CrossRefzbMATHGoogle Scholar
  11. 11.
    Hellmuth M., Imrich W., Klöckl W., Stadler P.F.: Local algorithms for the prime factorization of strong product graphs. Math. Comput. Sci. 2(4), 653–682 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hellmuth, M., Ostermeier, L., Stadler, P.F.: Unique square property, equitable partitions, and product-like graphs. Discrete Math. (2013, submitted). http://arxiv.org/abs/1301.6898
  13. 13.
    Imrich W., Klavžar S.: Product graphs. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley, New York (2000)Google Scholar
  14. 14.
    Imrich W., Klavžar S., Rall F.D.: Topics in Graph Theory: Graphs and Their Cartesian Product. AK Peters Ltd., Wellesley (2008)Google Scholar
  15. 15.
    Imrich W., Peterin I.: Recognizing Cartesian products in linear time. Discrete Math. 307(3–5), 472–483 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Imrich W., Pisanski T., Žerovnik J.: Recognizing Cartesian graph bundles. Discrete Math. 167–168, 393–403 (1997)CrossRefGoogle Scholar
  17. 17.
    Imrich W., Žerovnik J.: On the weak reconstruction of Cartesian-product graphs. Discrete Math. 150(1–3), 167–178 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Imrich W., Žerovnik J.: Factoring Cartesian-product graphs. J. Graph Theory 18, 557–567 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Imrich, W., Zmazek, B., Žerovnik, J.: Weak k-reconstruction of Cartesian product graphs. Electron. Notes Discrete Math. 10, 297–300 (2001). Comb01, Euroconference on Combinatorics, Graph Theory and ApplicationsGoogle Scholar
  20. 20.
    Sabidussi G.: Graph multiplication. Math. Z. 72, 446–457 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Žerovnik J.: On recognition of strong graph bundles. Math. Slovaca 50, 289–301 (2000)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Zmazek B., Žerovnik J.: Algorithm for recognizing Cartesian graph bundles. Discrete Appl. Math. 120, 275–302 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Zmazek B., Žerovnik J.: Weak reconstruction of strong product graphs. Discrete Math. 307, 641–649 (2007)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.Center for BioinformaticsSaarland UniversitySaarbrückenGermany
  2. 2.Chair of Applied MathematicsLeobenAustria
  3. 3.Department of Applied MathematicsVSB-Technical University of OstravaOstravaCzech Republic

Personalised recommendations