Mathematics in Computer Science

, Volume 7, Issue 2, pp 237–243 | Cite as

Face Antimagic Labeling of Jahangir Graph

  • Muhammad Kamran Siddiqui
  • Muhammad Numan
  • Muhammad Awais Umar
Article

Abstract

This paper deals with the problem of labeling the vertices, edges and faces of a plane graph. A weight of a face is the sum of the label of a face and the labels of the vertices and edges surrounding that face. In a super d-antimagic labeling the vertices receive the smallest labels and the weights of all s-sided faces constitute an arithmetic progression of difference d, for each s that appearing in the graph. The paper examines the existence of super d-antimagic labelings for Jahangir graphs for certain differences d.

Keywords

Plane graph d-antimagic labeling Jahangir graph 

Mathematics Subject Classification (2010)

Primary 05C78 Secondary 05C38 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahmad, A., Bača, M.: On vertex irregular total labelings. Ars Combin (in press)Google Scholar
  2. 2.
    Ali G., Bača M., Bashir F., Semaničová-Feňovčíková A.: On face antimagic labelings of disjoint union of prisms. Utilitas Math. 85, 97–112 (2011)MATHGoogle Scholar
  3. 3.
    Bača M., Bashir F., Semaničová-Feňovčíková A.: Face antimagic labelings of antiprisms. Utilitas Math. 84, 209–224 (2011)MATHGoogle Scholar
  4. 4.
    Bača M., Baskoro E.T., Jendroľ S., Miller M.: Antimagic labelings of hexagonal planar maps. Utilitas Math. 66, 231–238 (2004)MATHGoogle Scholar
  5. 5.
    Bača M., Brankovic L., Semaničová-Feňovčíková A.: Labelings of plane graphs containing Hamilton path. Acta Math. Sin. (Engl. Ser.) 27(4), 701–714 (2011)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Bača M., Jendroľ S., Miller M., Ryan J.: Antimagic labelings of generalized Petersen graphs that are plane. Ars Combin. 73, 115–128 (2004)MathSciNetMATHGoogle Scholar
  7. 7.
    Bača M., Lin Y., Miller M.: Antimagic labelings of grids. Utilitas Math. 72, 65–75 (2007)MATHGoogle Scholar
  8. 8.
    Bača M., Miller M.: On d-antimagic labelings of type (1,1,1) for prisms. J. Combin. Math. Combin. Comput. 44, 199–207 (2003)MathSciNetMATHGoogle Scholar
  9. 9.
    Bača M., Miller M., Phanalasy O., Semaničová-Feňovčíková A.: Super d-antimagic labelings of disconnected plane graphs. Acta Math. Sin. (Engl. Ser.) 26(12), 2283–2294 (2010)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Bodendiek R., Walther G.: On number theoretical methods in graph labelings. Res. Exp. Math. 21, 3–25 (1995)MathSciNetGoogle Scholar
  11. 11.
    Hartsfield N., Ringel G.: Pearls in Graph Theory. Academic Press, Boston (1990)MATHGoogle Scholar
  12. 12.
    Lih K.W.: On magic and consecutive labelings of plane graphs. Utilitas Math. 24, 165–197 (1983)MathSciNetMATHGoogle Scholar
  13. 13.
    Lin Y., Slamin , Bača M., Miller M.: On d-antimagic labelings of prisms. Ars Combin. 72, 65–76 (2004)MathSciNetMATHGoogle Scholar
  14. 14.
    Ma, K.J., Feng, C.J.: On the gracefulness of gear graphs. Math. Practice Theory. 72–73 (1984)Google Scholar
  15. 15.
    Sugeng K.A., Miller M., Lin Y., Bača M.: Face antimagic labelings of prisms. Utilitas Math. 71, 269–286 (2006)MATHGoogle Scholar
  16. 16.
    Tomescu I., Javaid I.: On the metric dimension of the Jahangir graph. Bull. Math. Soc. Sci. Math. Roumanie. 50, 371–376 (2007)MathSciNetGoogle Scholar
  17. 17.
    West D.B.: An Introduction to Graph Theory. Prentice- Hall, Prentice (1996)Google Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  • Muhammad Kamran Siddiqui
    • 1
  • Muhammad Numan
    • 1
  • Muhammad Awais Umar
    • 1
  1. 1.Abdus Salam School of Mathematical SciencesGC UniversityLahorePakistan

Personalised recommendations