Advertisement

Mathematics in Computer Science

, Volume 7, Issue 1, pp 71–85 | Cite as

Signature-based Perceptual Nearness: Application of Near Sets to Image Retrieval

  • Christopher J. Henry
  • Sheela RamannaEmail author
Article

Abstract

This paper presents a signature-based approach to quantifying perceptual nearness of images. A signature is defined as a set of descriptors, where each descriptor consists of a real-valued feature vector associated with a digital image region (set of pixels) combined with a region-based weight. Tolerance near sets provide a formal framework for our application of near sets to image retrieval. The tolerance nearness measure tNM was created to demonstrate application of near set theory to the problem of image correspondence. A new form of tNM has been introduced in this work, which takes into account the region size. Our method is compared to two other well-known image similarity measures: earth movers distance (EMD) and integrated region matching (IRM).

Keywords

Digital image Near sets Perceptual nearness Similarity measure Tolerance 

Mathematics Subject Classification (2010)

Primary 54E35 (metric spaces) 62H35 (image analysis) Secondary 68U10 (image processing) 68N01 (software) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    “Knowledge”: Oxford Dictionaries. Oxford University Press (2010)Google Scholar
  2. 2.
    Peters J.F., Wasilewski P.: Foundations of near sets. Info. Sci. 179(18), 3091–3109 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Pavel M.: Fundamentals of Pattern Recognition. Marcel Dekker, Inc., NY (1993)zbMATHGoogle Scholar
  4. 4.
    Zeeman, E.C.: The topology of the brain and the visual perception. In: Fort, K.M. (ed.) Topoloy of 3-Manifolds and Selected Topices, pp. 240–256. Prentice Hall, New Jersey (1965)Google Scholar
  5. 5.
    Zeeman, E.C., Buneman, O.P.: Tolerance spaces and the brain. In: Waddingto, C.H. (ed.) Towards a Theoretical Biology, pp. 140–151. The Origin of Life, Aldine Pub. Co., London (1968)Google Scholar
  6. 6.
    Naimpally S.A.: Near and far A centennial tribute to Frigyes Riesz. Siberian Electronic Mathematical Reports 6, A.1–A.10 (2009)MathSciNetGoogle Scholar
  7. 7.
    Naimpally S.A., Warrack B.D.: Proximity spaces. In: Cambridge Tract in Mathematics No. 59. Cambridge University Press, Cambridge, UK (1970)Google Scholar
  8. 8.
    Ramanna S., Meghdadi A.H., Peters J.F.: Nature-inspired framework for measuring image resemblance: A near rough set approach. Theoretical Computer Science 412(42), 5926–5938 (2011). doi: 10.1016/j.tcs.2011.05.044 MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Naimpally, S.A.: Proximity Approach to Problems in Topology and Analysis. Oldenburg Verlag, München (2009) ISBN 978-3-486-58917-7Google Scholar
  10. 10.
    Naimpally, S.A., Peters, J.F.: Topology with Applications.Topological Spaces via Near and Far. World Scientific, Singapore (2013) (in press)Google Scholar
  11. 11.
    Henry, C.J.: Near Sets: Theory and Applications. PhD thesis (2010). Available at: https://mspace.lib.umanitoba.ca/handle/1993/4267
  12. 12.
    Wolski M.: Perception and classification. A Note on near sets and rough sets.. Fundamenta Informaticae 101, 143–155 (2010)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Peters J.F.: Tolerance near sets and image correspondence. Int. J. Bio-Inspired Comput. 1(4), 239–245 (2009)CrossRefGoogle Scholar
  14. 14.
    Peters J.F.: Corrigenda and addenda: Tolerance near sets and image correspondence. Int. J. Bio-Inspired Comput. 2(5), 310–318 (2010)CrossRefGoogle Scholar
  15. 15.
    Peters J.F., Wasilewski P.: Tolerance spaces: Origins, theoretical aspects and applications. Info. Sci. 195(0), 211–225 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Henry, C.J., Ramanna, S., Levy, D.: Quantifying nearness in visual spaces. Cybernet. Sys. J. (2012) under reviewGoogle Scholar
  17. 17.
    Peters J.F., Naimpally S.A.: Applications of near sets. Notices. Amer. Math. Soc. 59(4), 536–542 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Henry C.J., Ramanna S.: Parallel computation in finding near neighbourhoods. Lect. Notes. Comput. Sci. 6954, 523–532 (2011)CrossRefGoogle Scholar
  19. 19.
    Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vision 40(2) (2000)Google Scholar
  20. 20.
    Li, J., Wang, J.Z., Wiederhold, G.: IRM: Integrated region matching for image retrieval. In: Proceedings of the 8th ACM International Conference on Multimedia, pp. 147 –156 (2000)Google Scholar
  21. 21.
    Wang J.Z., Li J., Wiederhold G.: SIMPLIcity: Semantics-sensitive integrated matching for picture libraries. IEEE Trans. Pattern. Anal. Mach. Intell. 23(9), 947–963 (2001)CrossRefGoogle Scholar
  22. 22.
    Peters, J.F.: Classification of objects by means of features. In: Proceedings of the IEEE Symposium Series on Foundations of Computational Intelligence (IEEE SCCI 2007), pp. 1–8 (2007)Google Scholar
  23. 23.
    Peters J.F.: Near sets. General theory about nearness of objects.. Applied Math. Sci. 1(53), 2609–2629 (2007)zbMATHGoogle Scholar
  24. 24.
    Peters J.F.: Classification of perceptual objects by means of features. Int. J. Info. Technol. Intell. Comput. 3(2), 1–35 (2008)Google Scholar
  25. 25.
    Duda R., Hart P., Stork D.: Pattern Classification, 2nd edn. Wiley, (2001)Google Scholar
  26. 26.
    Sossinsky A.B.: Tolerance space theory and some applications. Acta Applicandae Mathematicae: An International Survey Journal on Applying Mathematics and Mathematical Applications 5(2), 137–167 (1986)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Henry C.J.: Perceptually indiscernibility, rough sets, descriptively near sets, and image analysis. Transactions on Rough Sets LNCS7255, 41–121 (2012)CrossRefGoogle Scholar
  28. 28.
    Hassanien A.E., Abraham A., Peters J.F., Schaefer G., Henry C.: Rough sets and near sets in medical imaging: A review. IEEE Trans. Info. Technol. Biomed 13(6), 955–968 (2009)CrossRefGoogle Scholar
  29. 29.
    Henry, C.: Near set Evaluation And Recognition (NEAR) system. In: Pal, S.K., Peters, J.F. (eds.) Rough Fuzzy Analysis Foundations and Applications, pp. 7–1–7–22. CRC Press, Taylor & Francis Group. http://wren.ee.umanitoba.ca (2010)
  30. 30.
    Schroeder M., Wright M.: Tolerance and weak tolerance relations. J. Combinatorial Math. Combinatorial Computing 11, 123–160 (1992)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Datta D., Joshi D., Li J., Wang J.Z.: Image retrieval: Ideas, influences, and trends of the new age. ACM Comput. Surey. 40(2), 5:1–5:60 (2008)Google Scholar
  32. 32.
    Hitchcock F.L.: The distribution of a product from several sources to numerous localities. J. Math. Phys. 20, 224–230 (1941)MathSciNetGoogle Scholar
  33. 33.
    Rubner, Y., Tomasi, C., Guibas, L.J.: Code for the earth movers distance (emd), Stanford (1998) http://www.vision.caltech.edu/archive.html
  34. 34.
    Rubner, Y., Tomasi, C., Guibas, L.J.: A metric for distributions with applications to image databases. In: Proceedings of the 1998 IEEE International Conference on Computer Vision. pp. 59–66 (1998)Google Scholar
  35. 35.
    Hillier F.S., Lieberman G.J.: Introduction to Mathematical Programming. McGraw-Hill, New York, NY (1998)Google Scholar
  36. 36.
    Comaniciu D.: Mean shift: A robust approach toward feature space analysis. IEEE Trans. Patt. Anal. Mach. Intell. 24(5), 603–619 (2002)CrossRefGoogle Scholar
  37. 37.
    Wang, J., Thiesson, B., Xu, Y., Cohen, M.: Image and video segmentation by anisotropic kernel mean shift. In: Proceedings of the European Conference on Computer Vision (ECCV’04), vol. 2, pp. 238–249(2004)Google Scholar
  38. 38.
    Christoudias, C., Georgescu, B., Meer, P.: Synergism in low level vision. In: Proceedings of the 16th International Conference on Pattern Recognition, vol. 4. pp. 150–156 (2002)Google Scholar
  39. 39.
    Comaniciu, D., Ramesh, V., Meer, P.: The variable bandwidth mean shift and data-driven scale selection. In: Proceedings of the 8th IEEE International Conference on Computer Vision (ICCV 2001), vol. 1. (2001)Google Scholar
  40. 40.
    Georgescu, B., Shimshoni, I., Meer, P.: Mean shift based clustering in high dimensions: A texture classification example. In: Proceedings of the 9th IEEE International Conference on Computer Vision (ICCV 2003), vol. 1,pp. 456–463 (2003)Google Scholar
  41. 41.
    Garcia, V., Debreuva, E., Barland, M.: Fast k nearest neighbor search using GPU. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshop, pp. 1–6 (2008)http://www.i3s.unice.fr/~creative/KNN/
  42. 42.
    Smeulders A.W.M., Worring M., Santini S., Gupta A., Jain R.: Content-based image retrieval at the end of the early years. IEEE Trans. Patt. Anal. Mach. Intell. 22(12), 1349–1380 (2000)CrossRefGoogle Scholar
  43. 43.
    Choraś R.S., Andrysiak T., Choraś M.: Integrated color, texture and shape information for content-based image retrieval. Patt. Anal. Appl 10(4), 333–343 (2007)CrossRefGoogle Scholar
  44. 44.
    Grigorova A., De Natale F.G.B., Dagli C., Huang T.S.: Content-based image retrieval by feature adaptation and relevance feedback. IEEE Transactions on Multimedia 9(6), 1183–1192 (2007)CrossRefGoogle Scholar
  45. 45.
    Caicedo J.C., González F.A., Triana E., Romero E.: Design of Medical Image Database with Content-Based Retrieval Capabilities Volume LNCS 4872 of Adavances in Image and Video Technology. Springer-Verlag, Berlin (2007)Google Scholar
  46. 46.
    The Corel Stock Photo Library (PC/MAC ver.). Corel Corporation, Ottawa, Ontario, Canada (1994)Google Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.Department of Applied Computer ScienceUniversity of WinnipegWinnipegCanada

Personalised recommendations