Mathematics in Computer Science

, Volume 6, Issue 2, pp 147–165 | Cite as

Decomposition of Modular Codes for Computing Test Sets and Graver Basis

  • Irene Márquez-Corbella
  • Edgar Martínez-Moro


In order to obtain the set of codewords of minimal support for codes defined over \({\mathbb{Z}_q}\), one can compute a Graver basis of the ideal associated to such codes. The main aim of this article is to reduce the complexity of the algorithm obtained by the authors in a previous work taking advantage of the powerful decomposition theory for linear codes provided by the decomposition theory of representable matroids over finite fields. In this way we identify the codes that can be written as “gluing” of codes of shorter length. If this decomposition verifies certain properties then computing the set of codewords of minimal support in each code appearing in the decomposition is equivalent to computing the set of codewords of minimal support for the original code. Moreover, these computations are independent of each other, thus they can be carried out in parallel for each component, thereby not only obtaining a reduction of the complexity of the algorithm but also decreasing the time needed to process it.


Matroid theory Code decompositions Test sets Universal test sets Minimal support codewords Gröbner basis 

Mathematics Subject Classification (2010)

Primary 94B05 Secondary 05B35 12Y05 05E40 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barg, A.: Complexity issues in coding theory. In: Handbook of Coding Theory, vols. I, II, pp. 649–754. North-Holland, Amsterdam (1998)Google Scholar
  2. 2.
    Berlekamp E.R., McEliece R.J., van Tilborg Henk C.A.: On the inherent intractability of certain coding problems. IEEE Trans. Inf. Theory IT-24(3), 384–386 (1978)CrossRefGoogle Scholar
  3. 3.
    Borges-Quintana M., Borges-Trenard M.A., Fitzpatrick P., Martínez-Moro E.: Gröbner bases and combinatorics for binary codes. Appl. Algebra Eng. Commun. Comput. 19(5), 393– (2008)zbMATHCrossRefGoogle Scholar
  4. 4.
    Borges-Quintana M., Borges-Trenard M.A., Martínez-Moro E.: On a Gröbner bases structure associated to linear codes. J. Discrete Math. Sci. Cryptogr. 10(2), 151–191 (2007)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Borges-Quintana, M., Borges-Trenard, M.A., Márquez-Corbella, I., Martínez-Moro, E.: An algebraic view to gradient descent decoding. In: Information Theory Workshop (ITW), 2010 IEEE, vol. 3, pp. 1–4, 30 Sept 2010Google Scholar
  6. 6.
    Bruck J., Naor M.: The hardness of decoding linear codes with preprocessing. IEEE Trans. Inf. Theory. 36(2), 381–385 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Conti, P., Traverso, C.: Buchberger algorithm and integer programming. In: Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (New Orleans, LA, 1991). Lecture Notes in Comput. Sci., vol. 539, pp. 130–139. Springer, Berlin (1991)Google Scholar
  8. 8.
    García-García, J.I., Moreno-Frías, M.A., Vigneron-Tenorio, A.: On glued semigroups. ArXiv:1104.2835v2 (2011)Google Scholar
  9. 9.
    Graver J.E.: On the foundations of linear and integer linear programming. I. Math. Programm. 9(2), 207–226 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Hwang T.Y.: Decoding linear block codes for minimizing word error rate. IEEE Trans. Inf. Theory. 25(6), 733–737 (1979)zbMATHCrossRefGoogle Scholar
  11. 11.
    Ikegami D., Kaji Y.: Maximum likelihood decoding for linear block codes using Grobner bases. IEICE Trans. Fund. Electron. Commun. Comput. Sci. E 86(A(3), 643–651 (2003)Google Scholar
  12. 12.
    Kashyap N.: A decomposition theory for binary linear codes. IEEE Trans. Inf. Theory. 54(7), 3035–3058 (2008)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Kashyap N.: On minimal tree realizations of linear codes. IEEE Trans. Inf. Theory. 55(8), 3501–3519 (2009)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Liebler R.A.: Implementing gradient descent decoding. Michigan Math. J. 58(1), 285–291 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Márquez-Corbella I., Martínez-Moro E.: Algebraic structure of the minimal support codewords set of some linear codes. Adv. Math. Commun. 5(2), 233–244 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Massey, J.L.: Minimal codewords and secret sharing. In: Proceedings of the 6th Joint Swedish-Russian International Workshop on Information Theory, pp. 276–279 (1993)Google Scholar
  17. 17.
    Rosales J.C.: On presentations of subsemigroups of Nn. Semigroup Forum 55(2), 152–159 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Stein, W.A., et al.:Sage Mathematics Software (Version 4.7.2). The Sage Development Team (2012).
  19. 19.
    Sturmfels, B.: Gröbner bases and convex polytopes. University Lecture Series, vol. 8. American Mathematical Society, Providence (1996)Google Scholar
  20. 20.
    Thoma A.: Construction of set theoretic complete intersections via semigroup gluing. Beiträge Algebra Geom. 41(1), 195–198 (2000)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  1. 1.Department of Algebra Geometry and Topology, Institute of MathematicsUniversity of ValladolidValladolidSpain
  2. 2.Applied Mathematics Department, Institute of MathematicsUniversity of ValladolidValladolidSpain

Personalised recommendations