Mathematics in Computer Science

, Volume 6, Issue 1, pp 1–32 | Cite as

A Survey on Hypergraph Products

  • Marc Hellmuth
  • Lydia Ostermeier
  • Peter F. StadlerEmail author


A surprising diversity of different products of hypergraphs have been discussed in the literature. Most of the hypergraph products can be viewed as generalizations of one of the four standard graph products. The most widely studied variant, the so-called square product, does not have this property, however. Here we survey the literature on hypergraph products with an emphasis on comparing the alternative generalizations of graph products and the relationships among them. In this context the so-called 2-sections and L2-sections are considered. These constructions are closely linked to related colored graph structures that seem to be a useful tool for the prime factor decompositions w.r.t. specific hypergraph products. We summarize the current knowledge on the propagation of hypergraph invariants under the different hypergraph multiplications. While the overwhelming majority of the material concerns finite (undirected) hypergraphs, the survey also covers a summary of the few results on products of infinite and directed hypergraphs.


Hypergraph invariants Products Set systems 

Mathematics Subject Classification (2000)

Primary 99Z99 Secondary 00A00 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahlswede R., Cai N.: On partitioning and packing products with rectangles. Combin. Probab. Comput. 3(4), 429–434 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Ahlswede, R., Cai, N.: On extremal set partitions in Cartesian product spaces. In: Bollobás, B., et al. (eds.) Combinatorics, Geometry and Probability. A tribute to Paul Erdős. Proceedings of the conference dedicated to Paul Erdős on the occasion of his 80th birthday, pp. 23–32, Cambridge, UK, 26 March 1993. Cambridge University Press, Cambridge (1997)Google Scholar
  3. 3.
    Archambault D., Munzner T., Auber D.: TopoLayout: multilevel graph layout by topological features. IEEE Trans. Vis. Comput. Graphics 13(2), 305–317 (2007)CrossRefGoogle Scholar
  4. 4.
    Ausiello, G., Franciosa, P.G., Frigioni, D.: Directed hypergraphs: problems, algorithmic results, and a novel decremental approach. In: Restivo, A., Rocca, S.R.D., Roversi, L. (eds.) ICTCS. Lecture Notes in Computer Science, vol. 2202, pp. 312–327. Springer, Berlin (2001)Google Scholar
  5. 5.
    Bandelt H.-J., Prisner E.: Clique graphs and helly graphs. J. Combin. Theory Ser. B 51(1), 34–45 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Berge C.: Hypergraphs: Combinatorics of Finite Sets, vol. 45. North-Holland, Amsterdam (1989)Google Scholar
  7. 7.
    Berge, C., Simonovitis, M.: The coloring numbers of the direct product of two hypergraphs. In: Hypergraph Seminar. Lecture Notes in Mathematics, vol. 411, pp. 21–33. Springer, Berlin (1974)Google Scholar
  8. 8.
    Blasiak, A., Kleinberg, R., Lubetzky, E.: Lexicographic products and the power of non-linear network coding. CoRR. abs/1108.2489 (2011)Google Scholar
  9. 9.
    Bretto A.: Hypergraphs and the Helly property. Ars Combin. 78, 23–32 (2006)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Bretto, A., Silvestre, Y.: Factorization of Cartesian products of hypergraphs. In: Thai, M.T., et al. (eds.) Computing and Combinatorics. Proceedings of 16th Annual International Conference, COCOON 2010, Nha Trang, Vietnam, July 19–21, 2010. Lecture Notes in Computer Science, vol. 6196, pp. 173–181 Springer, Berlin (2010)Google Scholar
  11. 11.
    Bretto, A., Silvestre, Y., Vallée, T.: Cartesian product of hypergraphs: properties and algorithms. In: 4th Athens Colloquium on Algorithms and Complexity (ACAC 2009). EPTCS, vol. 4, pp. 22–28 (2009)Google Scholar
  12. 12.
    Cupal J., Kopp S., Stadler P.F.: RNA shape space topology. Artif. Life 6, 3–23 (2000)CrossRefGoogle Scholar
  13. 13.
    Doerr, B., Gnewuch, M., Hebbinghaus, N.: Discrepancy of products of hypergraphs. In: Felsner, S. (ed.) 2005 European Conference on Combinatorics, Graph Theory and Applications (EuroComb ’05). Extended abstracts from the conference, Technische Universität Berlin, Berlin, Germany, September 5–9, 2005. Paris: Maison de l’Informatique et des Mathématiques Discrètes (MIMD). Discrete Mathematics & Theoretical Computer Science. Proceedings. AE, 323-328 (2005)Google Scholar
  14. 14.
    Doerr B., Gnewuch M., Hebbinghaus N.: Discrepancy of symmetric products of hypergraphs. Discr. Math. Theor. Comput. Sci. AE, 323–338 (2005)Google Scholar
  15. 15.
    Doerr B., Srivastav A., Wehr P.: Discrepancy of Cartesian products of arithmetic progressions. Electron. J. Combin. 11s, 1–16 (2004)MathSciNetGoogle Scholar
  16. 16.
    Dörfler W.: Double covers of hypergraphs and their properties. Ars Combin. 6, 293–313 (1978)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Dörfler W.: Multiple covers of hypergraphs. Ann. NY Acad. Sci. 319(1), 169–176 (1979)CrossRefGoogle Scholar
  18. 18.
    Dörfler W.: On the direct product of hypergraphs. Ars Combin. 14, 67–78 (1982)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Dörfler W., Imrich W.: Über die X-Summe von Mengensystemen. Combinat. Theory Appl., Colloquia Math. Soc. Janos Bolyai 4, 297–309 (1970)Google Scholar
  20. 20.
    Dörfler W., Waller D.A.: A category-theoretical approach to hypergraphs. Arch. Math. 34, 185–192 (1980)zbMATHCrossRefGoogle Scholar
  21. 21.
    Fontana W., Schuster P.: Continuity in evolution: on the nature of transitions. Science 280, 1451–1455 (1998)CrossRefGoogle Scholar
  22. 22.
    Fontana W., Schuster P.: Shaping space: the possible and the attainable in RNA genotype-phenotype mapping. J. Theor. Biol. 194, 491–515 (1998)CrossRefGoogle Scholar
  23. 23.
    Füredi Z.: Matchings and covers in hypergraphs. Graphs Comb. 4(2), 115–206 (1988)zbMATHCrossRefGoogle Scholar
  24. 24.
    Gallo G., Scutellà M.: Directed hypergraphs as a modelling paradigm. Decis. Econ. Finance 21, 97–123 (1998)CrossRefGoogle Scholar
  25. 25.
    Gaszt G., Imrich W.: On the lexicographic and costrong product of set systems. Aequat. Math. 6, 319–320 (1971)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Gaszt G., Imrich W.: Über das lexikographische und das kostarke Produkt von Mengensystemen. (On the lexicographic and the costrong product of set systems). Aequat. Math. 7, 82–93 (1971)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Gringmann, L.: Hypergraph Products. Diploma thesis, Fakultät für Mathematik und Informatik, Universität Leipzig (2010)Google Scholar
  28. 28.
    Hahn, G.: Directed hypergraphs: the group of their composition. Ph.D. thesis, McMaster University (1980)Google Scholar
  29. 29.
    Hahn G.: The automorphism group of a product of hypergraphs. J. Combin. Theory Ser. B 30, 276–281 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Hammack R.: On direct product cancellation of graphs. Discrete Math. 309(8), 2538–2543 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Hammack R., Imrich W., Klavžar S.: Handbook of Product Graphs. Discrete Mathematics and its Applications, 2nd edn. CRC Press, Boca Raton (2011)Google Scholar
  32. 32.
    Heine C., Jaenicke S., Hellmuth M., Stadler P.F., Scheuermann G.: Visualization of graph products. IEEE Trans. Vis. Comput. Graphics 16(6), 1082–1089 (2010)CrossRefGoogle Scholar
  33. 33.
    Hellmuth M.: A local prime factor decomposition algorithm. Discrete Math. 311(12), 944–965 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Hellmuth, M., Ostermeier, L., Stadler, P.F.: A survey on hypergraph products. Math. Comput. Sci. (2012). doi: 10.1007/s11786-012-0109-6
  35. 35.
    Imrich W.: Kartesisches Produkt von Mengensystemen und Graphen. Studia Sci. Math. Hungar. 2, 285–290 (1967)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Imrich W.: über das schwache Kartesische Produkt von Graphen. J. Combin. Theory 11(1), 1–16 (1971)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Imrich W., Izbicki H.: Associative products of graphs. Monatsh. für Math. 80(4), 277–281 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Imrich W., Klavžar S.: Product Graphs. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley-Interscience, New York (2000)Google Scholar
  39. 39.
    Imrich W., Klavžar S., Douglas F.R.: Topics in Graph Theory: Graphs and Their Cartesian Product. AK Peters Ltd., Wellesley (2008)zbMATHGoogle Scholar
  40. 40.
    Imrich W., Peterin I.: Recognizing Cartesian products in linear time. Discrete Math. 307(3-5), 472–483 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Imrich W., Stadler P.F.: A prime factor theorem for a generalized direct product. Discussiones Math. Graph Th. 26, 135–140 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Nešetřil, J., Rödl, V.: Products of graphs and their applications. In: Graph Theory. Lecture Notes in Mathematics, vol. 1018, pp. 151–160. Springer, Berlin-Heidelberg (1983)Google Scholar
  43. 43.
    Kaveh A., Koohestani K.: Graph products for configuration processing of space structures. Comput. Struct. 86(11–12), 1219–1231 (2008)CrossRefGoogle Scholar
  44. 44.
    Kaveh A., Rahami H.: An efficient method for decomposition of regular structures using graph products. Int. J. Numer. Meth. Eng. 61(11), 1797–1808 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    McEliece R.J., Posner E.C.: Hide and seek, data storage, and entropy. Ann. Math. Stat. 42(5), 1706–1716 (1971)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Mubayi D., Rödl V.: On the chromatic number and independence number of hypergraph products. J. Combin. Theory Ser. B 97(1), 151–155 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Ostermeier, L., Hellmuth, M., Stadler, P.F.: The Cartesian product of hypergraphs. J. Graph Theory (2011)Google Scholar
  48. 48.
    Ostermeier P.-J., Hellmuth M., Klemm K., Leydold J., Stadler P.F.: A note on quasi-robust cycle bases. Ars Math. Contemp. 2(2), 231–240 (2009)MathSciNetzbMATHGoogle Scholar
  49. 49.
    Pemantle R., Propp J., Ullman D.: On tensor powers of integer programs. SIAM J. Discrete Math. 5(1), 127–143 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Sabidussi G.: Graph multiplication. Math. Z. 72(1), 446–457 (1960)MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Sonntag M.: Hamiltonian properties of the Cartesian sum of hypergraphs. J. Inf. Process. Cybern. 25(3), 87–100 (1989)MathSciNetzbMATHGoogle Scholar
  52. 52.
    Sonntag M.: Hamiltonicity of the normal product of hypergraphs. J. Inf. Process. Cybern. 26(7), 415–433 (1990)MathSciNetzbMATHGoogle Scholar
  53. 53.
    Sonntag M.: Corrigendum to: “Hamiltonicity of the normal product of hypergraphs”. J. Inf. Process. Cybern. 27(7), 385–386 (1991)MathSciNetzbMATHGoogle Scholar
  54. 54.
    Sonntag M.: Hamiltonicity and traceability of the lexicographic product of hypergraphs. J. Inf. Process. Cybern. 27(5–6), 289–301 (1991)zbMATHGoogle Scholar
  55. 55.
    Sonntag, M.: Hamiltonsche Eigenschaften von Produkten von Hypergraphen. Habilitation, Fakultät für Mathematik und Naturwissenschaften, Bergakademie Freiberg (1991)Google Scholar
  56. 56.
    Sonntag M.: Hamiltonicity of products of hypergraphs. Combinatorics, graphs and complexity. Proc. 4th Czech. Symp., Prachatice/Czech. 1990. Ann. Discrete Math. 51, 329–332 (1992)MathSciNetGoogle Scholar
  57. 57.
    Sonntag M.: Hamiltonicity of the disjunction of two hypergraphs. J. Inf. Process. Cybern. 29(3), 193–205 (1993)MathSciNetzbMATHGoogle Scholar
  58. 58.
    Stadler B.M.R., Stadler P.F., Wagner G.P., Fontana W.: The topology of the possible: formal spaces underlying patterns of evolutionary change. J. Theor. Biol. 213, 241–274 (2001)MathSciNetCrossRefGoogle Scholar
  59. 59.
    Sterboul, F.: On the chromatic number of the direct product of hypergraphs. In: Proc. 1st Working Sem. Hypergraphs, Columbus 1972. Lect. Notes Math., vol. 411, pp. 165–174 (1974)Google Scholar
  60. 60.
    Wagner G., Stadler P.F.: Quasi-independence, homology and the unity of type: a topological theory of characters. J. Theor. Biol. 220, 505–527 (2003)MathSciNetCrossRefGoogle Scholar
  61. 61.
    Zeigarnik, A.V.: On hypercycles and hypercircuits in hypergraphs. In: Hansen, P., Fowler, P.W., Zheng, M. (eds.) Discrete Mathematical Chemistry. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 51, pp. 377–383. American Mathematical Society, Providence (2000)Google Scholar
  62. 62.
    Zhu X.: On the chromatic number of the product of hypergraphs. Ars Comb. 34, 25–31 (1992)zbMATHGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  • Marc Hellmuth
    • 1
  • Lydia Ostermeier
    • 2
    • 3
  • Peter F. Stadler
    • 2
    • 3
    • 4
    • 5
    • 6
    Email author
  1. 1.Center for BioinformaticsSaarland UniversitySaarbrückenGermany
  2. 2.Max Planck Institute for Mathematics in the SciencesLeipzigGermany
  3. 3.Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for BioinformaticsUniversity of LeipzigLeipzigGermany
  4. 4.RNomics GroupFraunhofer Institut für Zelltherapie und ImmunologieLeipzigGermany
  5. 5.Department of Theoretical ChemistryUniversity of ViennaViennaAustria
  6. 6.Santa Fe InstituteSanta FeUSA

Personalised recommendations