Mathematics in Computer Science

, Volume 5, Issue 4, pp 437–467 | Cite as

A Validated Real Function Calculus

Open Access
Article

Abstract

We present a framework for validated numerical computations with real functions. The framework is based on a formalisation of abstract data types for basic floating-point arithmetic, interval arithmetic and function models based on Banach algebra. As a concrete instantiation, we develop an elementary smooth function calculus approximated by sparse polynomial models. We demonstrate formal verification applied to validated calculus by a formalisation of basic arithmetic operations in a theorem prover. The ultimate aim is to develop a formalism powerful enough for reachability analysis of nonlinear hybrid systems.

Keywords

Interval arithmetic Floating point Function calculus 

Mathematics Subject Classification (2010)

65G20 

Notes

Acknowledgments

Helpful discussions with Mioara Joldeş and Rolland Zumkeller are acknowledged. The second author was supported by a VENI Grant from The Netherlands Organisation for Scientific Research (NWO).

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. 1.
    Alur R., Dang T., Ivančić F.: Predicate abstraction for reachability analysis of hybrid systems. ACM Trans. Embed. Comput. Syst. 5(1), 152–199 (2006)CrossRefGoogle Scholar
  2. 2.
    Boldo, S.: Preuves formelles en arithmétiques à virgule flottante. PhD thesis, École Normale Supérieure de Lyon (2004)Google Scholar
  3. 3.
    Boldo, S.: Formal verification of numerical programs: from C annotated programs to coq proofs. In: Fainekos, G., Goubault, E., Putot, S. (eds.) Proceedings of the NSV-3, Edinburgh, UK (2010) (Federated Logic Conference)Google Scholar
  4. 4.
    Boldo, S., Filliâtre, J.-C.: Formal verification of floating-point programs. In: Muller, J.-M., Kornerup, P. (eds.) Proceedings of the ARITH-18, pp. 187–194. IEEE Computer Society Press, New York (2007)Google Scholar
  5. 5.
    Boldo S., Filliâtre J.-C., Melquiond G.: Combining Coq and Gappa for certifying floating-point programs. In: Carette, J., Dixon, L., Coen, C.S., Watt, S.M. (eds) Proceedings of the Calculemus/MKM 2009. LNCS, vol. 5625, pp. 59–74. Springer, Berlin (2009)Google Scholar
  6. 6.
    Boldo, S., Melquiond, G.: Flocq: a unified library for proving floating-point algorithms in Coq (2010). http://hal.inria.fr/inria-00534854
  7. 7.
    Brisebarre, N., Joldeş, M.: Chebyshev interpolation polynomial-based tools for rigorous computing. Technical Report RR2010-13, École Normale Supérieure de Lyon (2010)Google Scholar
  8. 8.
    Cháves Alonso, F.J.: Utilisation et certification de l’arithmétique d’intervalles dans un assistant de preuves. PhD thesis, École Normale Supérieure de Lyon (2007)Google Scholar
  9. 9.
    Chevillard, S., Harrison, J., Joldeş, M., Lauter, C.: Efficient and accurate computation of upper bounds of approximation errors. Technical Report RR2010-13, École Normale Supérieure de Lyon (2010)Google Scholar
  10. 10.
    Correnson, L., Cuoq, P., Puccetti, A., Signoles, J.: Frama-C user manual. CEA LIST (2010). http://frama-c.com
  11. 11.
    Daumas M., Rideau L., Théry L.: A generic library for floating-point numbers and its application to exact computing. In: Boulton, R.J., Jackson, P.B. (eds) Proceedings of the TPHOLS 2001. LNCS, vol. 2152, pp. 169–184. Springer, Berlin (2001)Google Scholar
  12. 12.
    Driscoll T.A., Bornemann F., Trefethen L.N.: The chebop system for automatic solution of differential equations. BIT 48(4), 701–723 (2008)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Makino K., Berz M.: Taylor models and other validated functional inclusion methods. Int. J. Pure Appl. Math. 4(4), 379–456 (2003)MATHMathSciNetGoogle Scholar
  14. 14.
    Pena J.M., Sauer T.: On the multivariate horner scheme. SIAM J. Numer. Anal. 37(4), 1186–1197 (2000)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Revol N., Makino K., Berz M.: Taylor models and floating-point arithmetic: proof that arithmetic operations are validated in COSY. J. Log. Algebr. Program. 64(1), 135–154 (2005)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    The Coq Development Team: Reference manual, version 8.3. INRIA (2010). http://coq.inria.fr/refman
  17. 17.
    Trefethen L.N.: Computing numerically with functions instead of numbers. Math. Comput. Sci 1(1), 9–19 (2007)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Zumkeller R.: Formal global optimisation with Taylor models. In: Furbach, U., Shankar, N. (eds) Proceedings of the IJCAR 2006. LNCS, vol. 4130, pp. 408–422. Springer, Berlin (2006)Google Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  1. 1.Maastricht UniversityMaastrichtThe Netherlands
  2. 2.Centrum Wiskunde & InformaticaAmsterdamThe Netherlands
  3. 3.INRIA, LIP (UMR 5668 CNRS, ENS de Lyon, INRIA, UCBL)Université de LyonLyonFrance

Personalised recommendations