Mathematics in Computer Science

, Volume 5, Issue 4, pp 469–497 | Cite as

PTIME Parametric Verification of Safety Properties for Reasonable Linear Hybrid Automata

  • Werner Damm
  • Carsten Ihlemann
  • Viorica Sofronie-Stokkermans


This paper identifies an industrially relevant class of linear hybrid automata (LHA) called reasonable LHA for which parametric verification of convex safety properties with exhaustive entry states can be verified in polynomial time and time-bounded reachability can be decided in nondeterministic polynomial time for non-parametric verification and in exponential time for parametric verification. Properties with exhaustive entry states are restricted to runs originating in a (specified) inner envelope of some mode-invariant. Deciding whether an LHA is reasonable is shown to be decidable in polynomial time.


Linear hybrid automata Decidability and complexity Parametric verification of safety properties 

Mathematics Subject Classification (2000)

34A38 34K34 (Hybrid systems) 68Q60 (Specification and verification) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, M., Thiagarajan, P.S.: The Discrete Time Behavior of Lazy Linear Hybrid Automata. In: Proceedings of HSCC 2005, LNCS, vol. 3414, pp. 55–69. Springer, Berlin (2005)Google Scholar
  2. 2.
    Agrawal A., Simon G., Karsai G.: Semantic translation of simulink/stateflow models to hybrid automata using graph transformations. Electr. Notes Theor. Comput. Sci. 109, 43–56 (2004)CrossRefGoogle Scholar
  3. 3.
    Alur R., Henzinger T.A., Ho P.H.: Automatic symbolic verification of embedded systems. IEEE Trans. Softw. Eng. 22(3), 181–201 (1996)CrossRefGoogle Scholar
  4. 4.
    Brihaye, T., Michaux, Ch., Rivière, C., Troestler, Ch.: On O-Minimal Hybrid Systems. In: Proceedings of HSCC 2004, LNCS, vol. 2993, pp. 219–233. Springer, Berlin (2004)Google Scholar
  5. 5.
    Brihaye T., Michaux Ch.: On the expressiveness and decidability of o-minimal hybrid systems. J. Complexity 21(4), 447–478 (2005)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Damm, W., Ihlemann, C., Sofronie-Stokkermans, V.: Decidability and complexity for the verification of reasonable linear hybrid automata. In: Proceedings of HSCC 2011, pp. 73–82, ACM, New York, USA (2011)Google Scholar
  7. 7.
    Damm W., Pinto G., Ratschan S.: Guaranteed termination in the verification of LTL properties of non-linear robust discrete time hybrid systems. Int. J. Found. Comput. Sci. 18(1), 63–86 (2007)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Damm W., Dierks H., Disch S., Hagemann W., Pigorsch F., Scholl C., Waldmann U., Wirtz B.: Exact and Fully Symbolic Verification of Linear Hybrid Automata with Large Discrete State Spaces. In: Roggenbach, M (eds) Science of Computer Programming Special Issue on Automated Verification of Critical Systems., Elsevier, Amsterdam (2011) (accepted for publication)Google Scholar
  9. 9.
    Dolzmann A., Sturm T.: Redlog: computer algebra meets computer logic. ACM SIGSAM Bull. 31(2), 2–9 (1997)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Frehse, G., Jha, S.K., Krogh, B.H.: A counterexample guided approach to parameter synthesis for linear hybrid automata. In: Proceedings of HSCC 2008, LNCS, vol. 4981, pp. 187–200. Springer, Berlin (2008)Google Scholar
  11. 11.
    Frehse G.: Tools for the verification of linear hybrid automata models. In: Handbook of Hybrid Systems Control, Theory—Tools—Applications. Cambridge University Press, Cambridge (2009)Google Scholar
  12. 12.
    Henzinger T.A., Kopke P.W., Puri A., Varaiya P.: What’s decidable about hybrid automata?.  J. Comput. Syst. Sci. 57(1), 94–124 (1998)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Henzinger T.A., Ho P.-H., Wong-Toi H.: Algorithmic analysis of nonlinear hybrid systems. IEEE Trans. Autom. Contr. 43, 540–554 (1998)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Ihlemann, C., Sofronie-Stokkermans, V.: System description: H-PILoT. In: Proceedings of CADE 2009, LNAI, vol. 5663, pp. 131–139. Springer, Berlin (2009)Google Scholar
  15. 15.
    Jha, S., Brady, B.A., Seshia, S.A.: Symbolic Reachability Analysis of Lazy Linear Hybrid Automata. In: Proceedings of FORMATS 2007 (2007)Google Scholar
  16. 16.
    Khachian L.: A polynomial time algorithm for linear programming. Sov. Math. Dokl. 20, 191–194 (1979)Google Scholar
  17. 17.
    Koubarakis M.: Tractable disjunctions of linear constraints: basic results and applications to temporal reasoning. Theor. Comput. Sci. 266, 311–339 (2001)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Koubarakis M., Skiadopoulos S.: Querying temporal and spatial constraint networks in PTIME. Artif. Intell. 123, 223–263 (2000)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Lafferriere G., Pappas G.J., Sastry S.: O-Minimal hybrid systems. Math. Contr. Signals Syst. 13(1), 1–21 (2000)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Lafferriere, G., Pappas, G.J., Yovine, S.: A new class of decidable hybrid systems. In: Proceedings of HSCC 1999, LNCS, vol. 1569, pp. 137–151. Springer, Berlin (1999)Google Scholar
  21. 21.
    Miller J.S.: Decidability and complexity results for timed automata and semi-linear hybrid automata. In: Proceedings of HSCC 2000, LNCS, vol. 1790, pp. 296–309. Springer, Berlin (2000)Google Scholar
  22. 22.
    de Moura, L.M., Bjørner, N.: Z3: An Efficient SMT Solver. In: Proceedings of TACAS 2008, LNCS, vol. 4963, pp. 337–340 (2008)Google Scholar
  23. 23.
    Nebel B., Bürckert H.-J.: Reasoning about temporal relations: a maximal tractable subclass of Allen’s interval algebra. J. ACM 42(1), 43–66 (1995)CrossRefMATHGoogle Scholar
  24. 24.
    Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications. In: Proceedings of FATES/RV 2006, LNCS, vol. 4262, pp. 178–192. Springer, Berlin (2006)Google Scholar
  25. 25.
    Platzer, A., Quesel, J.-D.: Logical verification and systematic parametric analysis in train control. In: Proceedings of HSCC 2008, LNCS, vol. 4981, pp. 646–649. Springer, Berlin (2008)Google Scholar
  26. 26.
    Platzer, A., Quesel, J.-D.: European train control system: a case study in formal verification. In: Proceedings of ICFEM 2009, LNCS, vol. 5885, pp. 246–265. Springer, Berlin (2009)Google Scholar
  27. 27.
    Sofronie-Stokkermans, V.: Hierarchic reasoning in local theory extensions. In: Proceedings of CADE-20, LNAI, vol. 3632, pp. 219–234. Springer, Berlin (2005)Google Scholar
  28. 28.
    Sofronie-Stokkermans, V.: Efficient hierarchical reasoning about functions over numerical domains. In: Proceedings of KI 2008, LNAI 5243, pp. 135–143. Springer, Berlin (2008)Google Scholar
  29. 29.
    Sofronie-Stokkermans, V.: Hierarchical reasoning for the verification of parametric systems. In: Proceedings of IJCAR 2010, LNAI, vol. 6173, pp. 171–187. Springer, Berlin (2010)Google Scholar
  30. 30.
    Sontag E.D.: Real addition and the polynomial hierarchy. Inf. Proc. Lett. 20(3), 115–120 (1985)CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Swaminathan, M., Fränzle, M.: A symbolic decision procedure for robust safety of timed systems. In: Proceedings of TIME 2007. IEEE Computer Society, USA (2007)Google Scholar
  32. 32.
    Tee G.J.: Khachian’s efficient algorithm for linear inequalities and linear programming. ACM SIGNUM Newsl. Arch. 15(1), 13–15 (1980)CrossRefGoogle Scholar
  33. 33.
    Tiwari, A.: Formal Semantics and Analysis Methods for Simulink Stateflow Models (unpublished report) (2007).
  34. 34.
    Wang F.: Symbolic parametric safety analysis of linear hybrid systems with BDD-like data-structures. IEEE Trans. Softw. Eng. 31(1), 38–51 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  • Werner Damm
    • 1
  • Carsten Ihlemann
    • 2
  • Viorica Sofronie-Stokkermans
    • 2
    • 3
  1. 1.Carl von Ossietzky University OldenburgOldenburgGermany
  2. 2.Max-Planck-Institut für InformatikSaarbrückenGermany
  3. 3.University Koblenz-LandauKoblenzGermany

Personalised recommendations