Mathematics in Computer Science

, Volume 5, Issue 1, pp 63–68 | Cite as

Super Edge-Magic Models

  • S. C. LópezEmail author
  • F. A. Muntaner-Batle
  • M. Rius-Font


In this paper, we generalize the concept of super edge-magic graph by introducing the new concept of super edge-magic models.


Proper edge coloring Super edge-magic graph Super edge-magic model 

Mathematics Subject Classification (2010)



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Acharya B.D., Hegde S.M.: Strongly indexable graphs. Discret. Math. 93, 123–129 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Chartrand G., Lesniak L.: Graphs and Digraphs, 2nd edn. Wadsworth & Brooks/Cole Advanced Books and Software, Monterey (1986)zbMATHGoogle Scholar
  3. 3.
    Enomoto H., Lladó A., Nakamigawa T., Ringel G.: Super edge-magic graphs. SUT J. Math. 34, 105–109 (1998)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Figueroa-Centeno R.M., Ichishima R., Muntaner-Batle F.A.: The place of super edge-magic labelings among other classes of labelings. Discret. Math. 231(1–3), 153–168 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Gallian J.A.: A dynamic survey of graph labeling. Electron. J. Combin. 16, #DS6 (2009)Google Scholar
  6. 6.
    Kotzig A., Rosa A.: Magic valuations of finite graphs. Can. Math. Bull. 13, 451–461 (1970)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Lladó A., Gutiérrez A.: Magic coverings. J. Comb. Math. Comb. 55, 43–56 (2005)zbMATHGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  • S. C. López
    • 1
    Email author
  • F. A. Muntaner-Batle
    • 2
  • M. Rius-Font
    • 1
  1. 1.Departament de Matemàtica Aplicada IVUniversitat Politècnica de CatalunyaCastelldefelsSpain
  2. 2.Graph Theory and Applications Research Group, School of Electrical Engineering and Computer Science, Faculty of Engineering and Built EnvironmentThe University of NewcastleNewcastleAustralia

Personalised recommendations