An Evolution-Based Approach for Approximate Parameterization of Implicitly Defined Curves by Polynomial Parametric Spline Curves

  • Huaiping Yang
  • Bert Jüttler
  • Laureano Gonzalez-Vega


We propose a novel approach for the approximate parameterization of an implicitly defined curve in the plane by polynomial parametric spline curves. The method generates the parameterization of the curve (which may consist of several open and closed branches) without using any a priori information about its topology. If needed the topology of the approximate parameterization can be certified against the initial curve in a simple way.


Evolution Approximate parameterization Implicitly defined curves 


  1. 1.
    Aigner M., Jüttler B.: Robust computation of foot points on implicitly defined curves. In: Dæhlen, M., Mørken, K., Schumaker, L. (eds.) Math. Meth. for Curves and Surfaces, pp. 1–10. Nashboro Press, Brentwood (2005)Google Scholar
  2. 2.
    Aigner M., Szilagyi I., Schicho J., Jüttler B.: Implicitization and distance bounds. In: Mourrain, B., Elkadi, M., Piene, R. (eds.) Algebraic Geometry and Geometric Modelling, pp. 71–86. Springer, Berlin (2006)CrossRefGoogle Scholar
  3. 3.
    Aruliah, D.A., Corless, R.M.L: Numerical parameterization of affine varieties using ODEs. In: Gutierrez, J. (ed.) Proc. ISSAC, pp. 12–18. ACM Press, New York (2004)Google Scholar
  4. 4.
    Bajaj C.L., Royappa A.V.: Parameterization in finite precision. Algorithmica 27, 100–114 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Bajaj C.L., Xu G.L.: Piecewise rational approximations of real algebraic curves. J. Comput. Math. 15, 55–71 (1997)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Blake A., Isard M.: Active contours. Springer, Berlin (2000)Google Scholar
  7. 7.
    Caravantes, J., Gonzalez-Vega, L.: Computing the topology of an arrangement of quartics. In: IMA Conference on the Mathematics of Surfaces, LNCS, vol. 4647, pp. 104–120 (2007)Google Scholar
  8. 8.
    Caselles V., Kimmel R., Sapiro G.: Geodesic active contours. Int. J. Comput. Vis. 22, 61–79 (1997)zbMATHCrossRefGoogle Scholar
  9. 9.
    Chen F., Deng L.: Interval implicitization of rational curves. Comput. Aided Geom. Des. 21, 401–415 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Chuang J., Hoffmann C.: On local implicit approximation and its applications. ACM Trans. Graph. 8, 298–324 (1989)zbMATHCrossRefGoogle Scholar
  11. 11.
    Corless, R., Giesbrecht, M., Kotsireas, I., Watt, S.: Numerical implicitization of parametric hypersurfaces with linear algebra. In: AISC’2000 Proceedings, Springer, LNAI (1930)Google Scholar
  12. 12.
    Cox D., Little J., O’Shea D.: Ideals, Varieties and Algorithms. Springer, New York (1997)Google Scholar
  13. 13.
    Cox D., Little J., O’Shea D.: Using Algebraic Geometry. Springer, New York (1998)zbMATHGoogle Scholar
  14. 14.
    Cox D., Goldman R., Zhang M.: On the validity of implicitization by moving quadrics for rational surfaces with no base points. J. Symb. Comput. 29, 419–440 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Dokken T.: Approximate Implicitization. In: Lyche, T., Schumaker, L. (eds.) Mathematical Methods in CAGD, pp. 1–25. Nashboro Press, Brentwood (2001)Google Scholar
  16. 16.
    Dokken, T., Thomassen, J.: Overview of Approximate Implicitization. In: Topics in Algebraic Geometry and Geometric Modeling, AMS Cont. Math. vol. 334, pp. 169–184 (2003)Google Scholar
  17. 17.
    Dokken T., Thomassen J.: Weak approximate implicitization. In: Mourrain, B., Elkadi, M., Piene, R. (eds.) Algebraic Geometry and Geometric Modelling., Springer, Berlin (2006)Google Scholar
  18. 18.
    Eigenwillig, A., Kerber, M., Wolpert, N.: Fast and Exact Geometric Analysis of Real Algebraic Plane Curves. Proceedings of the 2007 International Symposium on Symbolic and Algebraic Computation, pp. 151–158, ACM Press (2007)Google Scholar
  19. 19.
    Elkadi M., Mourrain B.: Residue and implicitization problem for rational surfaces. Appl. Algebra Eng. Commun. Comput. 14, 361–379 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Engl H., Hanke M., Neubauer A.: Regularization of inverse problems. Kluwer, Dordrecht (1996)zbMATHCrossRefGoogle Scholar
  21. 21.
    Gao X.-S., Li M.: Rational quadratic approximation to real algebraic curves. Comput. Aided Geom. Des. 21, 805–828 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Gonzalez-Vega L.: Implicitization of parametric curves and surfaces by using multidimensional Newton formulae. J. Symb. Comput. 23, 137–151 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Gonzalez-Vega L., Necula I.: Efficient topology determination of implicitly defined algebraic plane curves. Comput. Aided Geom. Des. 19, 719–743 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Jüttler B., Felis A.: Least-squares fitting of algebraic spline surfaces. Adv. Comput. Math. 17, 135–152 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Kass M., Witkin A., Terzopoulus D.: Snakes: active contour models. Int. J. Comput Vis. 1, 231–233 (1988)Google Scholar
  26. 26.
    Lee K.: Principles of CAD/CAM/CAE Systems. Prentice Hall, Upper Saddle River (1999)Google Scholar
  27. 27.
    McInerney, T., Terzopoulos, D.: Topologically adaptable snakes. In: ICCV ’95 Proceedings of the Fifth International Conference on Computer Vision, pp. 840–845 (1995)Google Scholar
  28. 28.
    McInerney T., Terzopoulos D.: T-snakes: topology adaptive snakes. Med. Image Anal. 4, 73–91 (2000)CrossRefGoogle Scholar
  29. 29.
    Patrikalakis N.M., Maekawa T.: Chapter 25: Intersection Problems. In: Farin, G., Hoschek, J., Kim, M.-S. (eds.) Handbook of Computer Aided Geometric Design., Elsevier, Amsterdam (2002)Google Scholar
  30. 30.
    Perez-Diaz S., Sendra J.R., Sendra J.: Parametrization of approximate algebraic curves by lines. Theor. Comput. Sci. 315, 627–650 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Precioso F., Barlaud M.: B-spline active contour with handling of topology changes for fast video segmentation. EURASIP J. Appl. Signal Process. 2002, 555–560 (2002)zbMATHCrossRefGoogle Scholar
  32. 32.
    Precioso F., Barlaud M., Blu T., Unser M.: Robust real-time segmentation of images and videos using a smooth-spline snake-based algorithm. IEEE Trans Image Process. 14, 910–924 (2005)CrossRefGoogle Scholar
  33. 33.
    Sederberg, T.W., Chen, F.: Implicitization using moving curves and surfaces. In: Proc. Siggraph, pp. 301–308 (1995)Google Scholar
  34. 34.
    Sendra J.R.: Normal parametrizations of algebraic plane curves. J. Symb. Comp. 33, 863–885 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Taubin G.: Distance approximation for rasterizing implicit curves. ACM Trans. Graph. 13, 3–42 (1994)zbMATHCrossRefGoogle Scholar
  36. 36.
    Yang, H., Fuchs, M., Jüttler, B., Scherzer, O.: Evolving T-spline level sets, Shape Modeling and Applications 2006, IEEE, pp. 247–252. Extended version available as an FSP report at
  37. 37.
    Yap, C.K.: Complete subdivision algorithms, I: intersection of Bezier curves. In: SCG ’06 Proceedings of the twenty-second annual symposium on Computational Geometry, pp. 217–226, ACM Press (2006)Google Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  • Huaiping Yang
    • 1
  • Bert Jüttler
    • 1
  • Laureano Gonzalez-Vega
    • 2
  1. 1.Institute of Applied GeometryJohannes Kepler UniversityLinzAustria
  2. 2.Departamento de MatematicasUniversidad de CantabriaSantander, CantabriaSpain

Personalised recommendations