Globally Convergent, Iterative Path-Following for Algebraic Equations

Article
  • 66 Downloads

Abstract

Homotopy methods are of great importance for the solution of systems of equations. It is a major problem to ensure well-defined iterations along the homotopy path. Many investigations have considered the complexity of path-following methods depending on the unknown distance of some given path to the variety of ill-posed problems. It is shown here that there exists a construction method for safe paths for a single algebraic equation. A safe path may be effectively determined with bounded effort. Special perturbation estimates for the zeros together with convergence conditions for Newton’s method in simultaneous mode allow our method to proceed on the safe path. This yields the first globally convergent, never-failing, uniformly iterative path-following algorithm. The maximum number of homotopy steps in our algorithm reaches a theoretical bound forecast by Shub and Smale i.e., the number of steps is at most quadratic in the condition number. A constructive proof of the fundamental theorem of algebra meeting demands by Gauß, Kronecker and Weierstraß is a consequence of our algorithm.

References

  1. 1.
    Batra P.: Simultaneous point estimates for Newton’s method. BIT Numer. Math. 42(3), 467–476 (2002)MathSciNetMATHGoogle Scholar
  2. 2.
    Batra P.: Newton’s method and the computational complexity of the fundamental theorem of algebra. ENTCS 202, 201–218 (2008)MathSciNetGoogle Scholar
  3. 3.
    Beauzamy B.: How the roots of a polynomial vary with its coefficients: a local quantitative result. Can. Math. Bull. 42(1), 3–12 (1999)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Beltrán C., Pardo L.M.: On Smale’s 17th problem: a probabilistic positive solution. Found. Comp. Math. 8(1), 1–43 (2008)MATHCrossRefGoogle Scholar
  5. 5.
    Blum L., Cucker F., Shub M., Smale S.: Complexity and Real Computation. Springer, New York (1998)Google Scholar
  6. 6.
    Bürgisser, P.: Smoothed analysis of condition numbers. In: Proceedings of the ICM 2010, Hyderabad, India, August 2010. IMU, Berlin (2010). http://www-math.uni-paderborn.de/agpb/work/pbuerg-icm2010.pdf
  7. 7.
    Bürgisser, P., Cucker, F.: On a problem posed by Steve Smale. In: STOC’10: Proceedings of the 42nd Annual ACM Symposium on Theory of Computing, Cambridge, Mass., USA; June 2010. ACM (2010). http://www-math.uni-paderborn.de/agpb/work/0909.2114v4.pdf
  8. 8.
    Collins G.E., Horowitz E.: The minimum root separation of a polynomial. Math. Comput. 28(126), 589–597 (1974)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Cucker F., Blum L.: The work of Steve Smale on the theory of computation: 1990–1999. In: Cucker, F., Rojas, J.M. (eds) Foundations of Computational Mathematics, pp. 15–33. World Scientific, Singapore (2002)Google Scholar
  10. 10.
    Ćurgus B., Mascioni V.: On the location of critical points of polynomials. Proc. Am. Math. Soc. 131(1), 253–264 (2003)MATHCrossRefGoogle Scholar
  11. 11.
    Darboux, G.: Sur les développements en série des fonctions d’une seule variable. Journal de mathématiques pures et appliquées (Liouville Journal)(3) II:291–312 (1876). http://gallica.bnf.fr/ark:/12148/bpt6k16420b.image.f291
  12. 12.
    Dedieu J.-P.: Points fixes, zéros et la méthode de Newton. Springer, Berlin (2006)MATHGoogle Scholar
  13. 13.
    Demmel J.W.: On condition numbers and the distance to the nearest ill-posed problem. Numer. Math. 51, 251–289 (1987)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Doyle P., McMullen C.: Solving the quintic by iteration. Acta Math. 163, 151–180 (1989)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Edwards H.M.: Essays in Constructive Mathematics. Springer, New York (2005)MATHGoogle Scholar
  16. 16.
    Edwards H.M.: Kronecker’s algorithmic mathematics. Math. Intell. 31(2), 11–14 (2009)MATHCrossRefGoogle Scholar
  17. 17.
    Galántai A., Hegedűs C.J.: Perturbation bounds for polynomials. Numer. Math. 109(1), 77–100 (2008)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Giusti M., Lecerf G., Salvy B., Yakoubsohn J.-C.: On location and approximation of clusters of zeros of analytic functions. Found. Comp. Math. 5(3), 257–311 (2005)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Goldstein A.J., Graham R.L.: A Hadamard-type bound on the coefficients of a determinant of polynomials. SIAM Rev. 16, 394–395 (1974)CrossRefGoogle Scholar
  20. 20.
    Grenander, U., Szegö, G.: Toeplitz Forms and their Applications. Chelsea, New York (Reprint of 1st ed. from 1958) (1984)Google Scholar
  21. 21.
    Hirsch M.W., Smale S.: On algorithms for solving f(x) = 0. Commun. Pure Appl. Math. XXXII, 281–312 (1979)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Hubbard J., Schleicher D., Sutherland S.: How to find all roots of complex polynomials by Newton’s method. Invent. Math. 146(1), 1–33 (2001)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Kim, M.H.: Computational complexity of the Euler-type algorithms for the roots of complex polynomials. PhD thesis, City University of New York (1985)Google Scholar
  24. 24.
    Kim M.-H., Sutherland S.: Polynomial root-finding algorithms and branched covers. SIAM J. Comput. 23(2), 415–436 (1994)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Kirrinnis P.: Partial fraction decomposition in \({\mathbb{C}(z)}\) and simultaneous Newton iteration for factorization in \({\mathbb{C}[z]}\) . J. Complexity 14, 378–444 (1998)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Kronecker L.: Grundzüge einer arithmetischen Theorie der algebraischen Größen. Journal f. d. reine und angewandte Mathematik 92, 1–122 (1882)Google Scholar
  27. 27.
    Malajovich G.: On generalized Newton algorithms: quadratic convergence, path-following and error analysis. Theor. Comput. Sci. 133, 65–84 (1994)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Marden M.M.: The Geometry of Polynomials, 2nd ed. AMS, Providence (1966)Google Scholar
  29. 29.
    McMullen C.: Families of rational maps and iterative root-finding algorithms. Ann. Math. 125, 467–493 (1987)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Mora T.: Solving Polynomial Equation Systems I. Cambridge University Press, Cambridge (2003)MATHCrossRefGoogle Scholar
  31. 31.
    Neff C.A., Reif J.H.: An efficient algorithm for the complex roots problem. J. Complexity 12, 81–115 (1996)MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Netto, E.: Die vier Gauss’schen Beweise für die Zerlegung ganzer algebraischer Funktionen in reelle Factoren ersten oder zweiten Grades (1799–1849). Akademische Verlagsgesellschaft m.b.H. in Leipzig; Verlag von Wilhelm Engelmann, Leipzig und Berlin, 3rd edition (1913)Google Scholar
  33. 33.
    Ostrowski A.: Solution of Equations in Euclidean and Banach Spaces. Academic Press, New York (1973)MATHGoogle Scholar
  34. 34.
    Pan V.Y.: Solving a polynomial equation: some history and recent progress. SIAM Rev. 39(2), 187–220 (1997)MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Rahman Q.I., Schmeisser G.: Analytic Theory of Polynomials. Oxford University Press, Oxford (2002)MATHGoogle Scholar
  36. 36.
    Rosenbloom P.C.: Perturbation of zeros of analytic functions. II. J. Approx. Theory 2, 275–300 (1969)MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Schönhage, A.: The fundamental theorem of algebra in terms of computational complexity. Preliminary report. http://www.informatik.uni-bonn.de/~schoe/fdthmrep.ps.gz, August 1982
  38. 38.
    Sharma, V.: Complexity analysis of algorithms in algebraic computation. PhD thesis, Courant Institute of Mathematical Sciences, New York University (2007)Google Scholar
  39. 39.
    Sharma, V., Du, Z., Yap, C.K.: Robust approximate zeros. In: Brodal, G.S. (ed.) Algorithms–ESA 2005. Lecture Notes in Computer Science, vol. 3669, pp. 874–886. Springer, Berlin (2005)Google Scholar
  40. 40.
    Shub M., Smale S.: Computational complexity: on the geometry of polynomials and a theory of cost: II. SIAM J. Comput. 15(1), 145–161 (1986)MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Shub M., Smale S.: Complexity of Bezout’s theorem. I: geometric aspects. J. AMS 6(2), 459–501 (1993)MathSciNetMATHGoogle Scholar
  42. 42.
    Shub M., Smale S.: Complexity of Bezout’s theorem. V: polynomial time. Theor. Comput. Sci. 133, 141–164 (1994)MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    Shub M., Smale S.: Complexity of Bezout’s theorem. IV: probability of success; extensions. SIAM J. Numer. Anal. 33(1), 128–148 (1996)MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    Smale S.: On the efficiency of algorithms of analysis. Bull. AMS (N.S.) 13(2), 87–121 (1985)MathSciNetMATHCrossRefGoogle Scholar
  45. 45.
    Smale, S.: Algorithms for solving equations. In: Proceedings of the International Congress of Mathematicians, Berkeley, CA, USA, pp. 172–195. AMS, Providence (1986)Google Scholar
  46. 46.
    Smale S.: Newton’s method estimates from data at one point. In: Ewing, R.E., Gross, K.I., Martin, C.F. (eds) The Merging of Disciplines, pp. 185–196. Springer, New York (1986)CrossRefGoogle Scholar
  47. 47.
    Smale S.: Complexity theory and numerical analysis. Acta Numer. 6, 523–551 (1997)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Smale S.: Mathematical problems for the next century. In: Arnold, V. (eds) Mathematics: Frontiers and Perspectives, pp. 271–294. AMS, Providence (2000)Google Scholar
  49. 49.
    Wang X.: A summary on continuous complexity theory. Contemp. Math. 163, 155–170 (1994)Google Scholar
  50. 50.
    Wang X.-H., Han D.-F.: On dominating sequence method in the point estimate and Smale theorem. Sci. China 33(2), 135–144 (1990)MathSciNetMATHGoogle Scholar
  51. 51.
    Wang X., Shen G., Han D.: Some remarks on Smale’s “Algorithms for solving equations”. Acta Math. Sin., New Series 8(4), 337–348 (1992)MathSciNetMATHCrossRefGoogle Scholar
  52. 52.
    Weierstraß, K.: Neuer Beweis des Satzes, dass jede ganze rationale Function einer Veränderlichen dargestellt werden kann als ein Product aus linearen Functionen derselben Veränderlichen. Sitzungsberichte der Akademie der Wissenschaften zu Berlin, pp. 1085–1101, 1891. In: Mathematische Werke, volume III, pp. 251–269. Mayer & Müller, Berlin, 1903. http://ia310831.us.archive.org/3/items/mathematischewer03weieuoft/mathematischewer03weieuoft.pdf
  53. 53.
    Weyl H.: Randbemerkungen zu Hauptproblemen der Mathematik. Math. Zeitschrift 20, 131–150 (1924)MathSciNetCrossRefGoogle Scholar
  54. 54.
    Whittaker, E.T., Watson, G.N.: Modern Analysis, 4th ed., 1927. Cambridge University Press, Cambridge. Reprinted 1980Google Scholar
  55. 55.
    Yakoubsohn J.-C.: Simultaneous computation of all the zero-clusters of a univariate polynomial. In: Cucker, F., Rojas, J.M. (eds) Foundations of Computational Mathematics, pp. 433–455. World Scientific, Singapore (2002)Google Scholar
  56. 56.
    Yap C.K.: Fundamental Problems of Algorithmic Algebra. Oxford University Press, New York (2000)MATHGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Institut für RechnertechnologieTechnische Universität Hamburg-HarburgHamburgGermany

Personalised recommendations