Advertisement

Mathematics in Computer Science

, Volume 5, Issue 2, pp 195–207 | Cite as

Solving the 100 Swiss Francs Problem

Article

Abstract

Sturmfels offered 100 Swiss Francs in 2005 to a conjecture, which deals with a special case of the maximum likelihood estimation for a latent class model. This paper confirms the conjecture positively.

Keywords

Maximum likelihood estimation Latent class model Solving polynomial equations Algebraic statistics 

Mathematics Subject Classification (2000)

Primary 65H10 Secondary 62P10 62F30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Buchberger B.: Gröbner-Basis: An Algorithmic Method in Polynomial Ideal Theory. Reidel Publishing Company, Dodrecht (1985)Google Scholar
  2. 2.
    Catanese F., Hoşten S., Khetan A., Sturmfels B.: The maximum likelihood degree. Am. J. Math. 128, 671–697 (2006)MATHCrossRefGoogle Scholar
  3. 3.
    Faugère J.C.: A new efficient algorithm for computing Gröbner basis (F4). J. Pure Appl. Algebra 139(1–3), 61–88 (1999)MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Faugère, J.C.: A new efficient algorithm for computing Gröbner basis without reduction to zero (F5). In: ISSAC ’02: Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation. New York, NY, USA, ACM, pp. 75–83 (2002)Google Scholar
  5. 5.
    Fienberg S., Hersh P., Rinaldo A., Zhou Y. et al.: Maximum likelihood estimation in latent class models for contingency table data. In: Gibilisco, P. (eds) Algebraic and geometric methods in statistics, Cambridge University Press, Cambridge (2009)Google Scholar
  6. 6.
    Gao, S., Guan, Y., Volny, F. IV.: A new incremental algorithm for computing Gröbner bases. In: ISSAC’10: Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation. Munich, Germany, ACM, pp. 13–19 (2010)Google Scholar
  7. 7.
    Gao, S., Volny, F. IV., Wang, S.: A new algorithm for computing Gröbner bases (2010). http://www.math.clemson.edu/~sgao/pub.html
  8. 8.
    Henry N.W., Lazarsfeld P.F.: Latent Structure Analysis. Houghton Mufflin Company, Houghton (1968)MATHGoogle Scholar
  9. 9.
    Hoşten S., Khetan A., Sturmfels B.: Solving the likelihood equations. Found. Comput. Math. 5, 389–407 (2005)MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Pachter L., Sturmfels B.: Algebraic Statistics for Computational Biology. Cambridge University Press, Cambridge (2005)MATHCrossRefGoogle Scholar
  11. 11.
    Sturmfels, B.: Open problems in Algebraic Statistics, In: Putinar, M., Sullivant, S. (eds.) Emerging Applications of Algebraic Geometry, pp. 351–364. I.M.A. Volumes in Mathematics and its Applications, vol. 149. Springer, New York (2008)Google Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Center for Human Genome VariationDuke UniversityDurhamUSA
  2. 2.Department of Computer ScienceZhejiang UniversityHangzhouChina
  3. 3.Department of Mathematical SciencesClemson UniversityClemsonUSA

Personalised recommendations