Mathematics in Computer Science

, Volume 4, Issue 2–3, pp 359–383 | Cite as

Constructive D-Module Theory with Singular

  • Daniel Andres
  • Michael Brickenstein
  • Viktor LevandovskyyEmail author
  • Jorge Martín-Morales
  • Hans Schönemann


We overview numerous algorithms in computational D-module theory together with the theoretical background as well as the implementation in the computer algebra system Singular. We discuss new approaches to the computation of Bernstein operators, of logarithmic annihilator of a polynomial, of annihilators of rational functions as well as complex powers of polynomials. We analyze algorithms for local Bernstein–Sato polynomials and also algorithms, recovering any kind of Bernstein–Sato polynomial from partial knowledge of its roots. We address a novel way to compute the Bernstein–Sato polynomial for an affine variety algorithmically. All the carefully selected nontrivial examples, which we present, have been computed with our implementation. We also address such applications as the computation of a zeta-function for certain integrals and revealing the algebraic dependence between pairwise commuting elements.


D-modules Non-commutative Gröbner basis Annihilator ideal b-Function Bernstein–Sato polynomial Bernstein–Sato ideal 

Mathematics Subject Classification (2010)

13P10 14F10 68W30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andres, D., Levandovskyy, V., Martín-Morales, J.: Principal intersection and Bernstein–Sato polynomial of an affine variety. In: May, J.P. (ed.) Proceedings of the International Symposium on Symbolic and Algebraic Computation (ISSAC’09), pp. 231–238. ACM Press, New York (2009)Google Scholar
  2. 2.
    Andres, D., Levandovskyy, V., Martín-Morales, J.: Effective methods for the computation of Bernstein–Sato polynomials for hypersurfaces and affine varieties. (2010)
  3. 3.
    Bahloul R., Oaku T.: Local Bernstein–Sato ideals: algorithm and examples. J. Symb. Comput. 45(1), 46–59 (2010)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bernstein I.N.: Modules over a ring of differential operators. An investigation of the fundamental solutions of equations with constant coefficients. Funct. Anal. Appl. 5(2), 89–101 (1971)zbMATHCrossRefGoogle Scholar
  5. 5.
    Briançon, J., Maisonobe, P.: Remarques sur l’idéal de Bernstein associé à des polynômes. Preprint no. 650, Univ. Nice Sophia-Antipolis (2002)Google Scholar
  6. 6.
    Brickenstein, M.: Slimgb: Gröbner Bases with Slim Polynomials. In: Rhine Workshop on Computer Algebra, pp. 55–66. Proceedings of RWCA’06, Basel, March 2006Google Scholar
  7. 7.
    Budur N., Mustaţǎ M., Saito M.: Bernstein–Sato polynomials of arbitrary varieties. Compos. Math. 142(3), 779–797 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Bueso J., Gömez-Torrecillas J., Verschoren A.: Algorithmic methods in non-commutative algebra. Applications to quantum groups. Kluwer, Dordrecht (2003)zbMATHGoogle Scholar
  9. 9.
    Castro-Jiménez, F., Narváez-Macarro, L.: Homogenising differential operators. Prepublicaciön no. 36, Universidad de Sevilla (1997)Google Scholar
  10. 10.
    Coutinho, S.: A Primer of Algebraic \({\mathcal{D}}\)-Modules. Cambridge University Press, Cambridge (1995)CrossRefGoogle Scholar
  11. 11.
    Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 3-1-2. A Computer Algebra System for Polynomial Computations. Centre for Computer Algebra, University of Kaiserslautern. (2010)
  12. 12.
    Faugere J.C., Gianni P., Lazard D., Mora T.: Efficient computation of zero-dimensional Gröbner bases by change of ordering. J. Symb. Comput. 16(4), 329–344 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Gago-Vargas J., Hartillo-Hermoso M., Ucha-Enríquez J.: Comparison of theoretical complexities of two methods for computing annihilating ideals of polynomials. J. Symb. Comput. 40(3), 1076–1086 (2005)zbMATHCrossRefGoogle Scholar
  14. 14.
    Greuel, G.-M., Levandovskyy, V., Schönemann, H.: Plural. A Singular 3-1-0 Subsystem for Computations with Non-commutative Polynomial Algebras. Centre for Computer Algebra, University of Kaiserslautern. (2006)
  15. 15.
    Greuel, G.-M., Pfister, G.: A SINGULAR Introduction to Commutative Algebra. Springer, 2nd edn. With contributions by Bachmann, O., Lossen, C., Schönemann, H. (2008)Google Scholar
  16. 16.
    Hartillo-Hermoso, M.I.: About an algorithm of T. Oaku. In: Ring theory and algebraic geometry (León, 1999), Lecture Notes in Pure and Applied Mathematics, vol. 221, pp. 241–250. Dekker, New York (2001)Google Scholar
  17. 17.
    Kandri-Rody A., Weispfenning V.: Non-commutative Gröbner bases in algebras of solvable type. J. Symb. Comput. 9(1), 1–26 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Kashiwara M.: B-functions and holonomic systems. Rationality of roots of B-functions. Invent. Math. 38(1), 33–53 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Levandovskyy, V.: On preimages of ideals in certain non-commutative algebras. In: Pfister, G., Cojocaru, S., Ufnarovski, V. (eds.) Computational Commutative and Non-Commutative Algebraic Geometry. IOS Press, Amsterdam (2005)Google Scholar
  20. 20.
    Levandovskyy, V., Martín-Morales, J.: Computational D-module theory with singular, comparison with other systems and two new algorithms. In: Proceedings of the International Symposium on Symbolic and Algebraic Computation (ISSAC’08). ACM Press, New York. (2008)
  21. 21.
    Levandovskyy V., Martín-Morales J. (2010) Algorithms for checking rational roots of b-functions and their applications. (2010)
  22. 22.
    Levandovskyy, V., Schönemann, H.: Plural—a computer algebra system for noncommutative polynomial algebras. In: Proc. of the International Symposium on Symbolic and Algebraic Computation (ISSAC’03), pp. 176–183. ACM Press, New York (2003)Google Scholar
  23. 23.
    Li, H.: Noncommutative Gröbner Bases And Filtered-Graded Transfer. Springer, Berlin (2002)Google Scholar
  24. 24.
    Malgrange, B.: Le polynôme de Bernstein d’une singularité isolée. In: Fourier Integral Operators and Partial Differential Equations (Colloq. Internat., Univ. Nice, Nice, 1974), pp. 98–119. Lecture Notes in Math., vol. 459. Springer, Berlin (1975)Google Scholar
  25. 25.
    Mebkhout Z.: Sur le théorème de finitude de la cohomologie p-adique d’une variété affine non singulière. Am. J. Math. 119(5), 1027–1081 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Mebkhout Z., Narváez-Macarro L.: Le théorème de continuité de la division dans les anneaux d’opérateurs différentiels. J. Reine Angew. Math. 503, 193–236 (1998)zbMATHMathSciNetGoogle Scholar
  27. 27.
    Nakayama H.: Algorithm computing the local b function by an approximate division algorithm in \({\widehat{\mathcal{D}}}\). J. Symb. Comput., 44(5), 449–462 (Spanish National Conference on Computer Algebra) (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Narváez-Macarro, L.: Linearity conditions on the Jacobian ideal and logarithmic-meromorphic comparison for free divisors. In: Singularities I, Algebraic and Analytic Aspects, pp. 245–269. Contemporary Mathematics, 474, AMS, 2008Google Scholar
  29. 29.
    Nishiyama K., Noro M.: Stratification associated with local b-functions. J. Symb. Comput. 45(4), 462–480 (2010)zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Noro, M.: An efficient modular algorithm for computing the global b-function. In: Mathematical software (Beijing, 2002), pp. 147–157. World Science Publication, River Edge (2002)Google Scholar
  31. 31.
    Noro, M., Shimoyama, T., Takeshima, T.: Risa/Asir, an open source general computer algebra system. (2006)
  32. 32.
    Oaku T.: Algorithms for the b-function and D-modules associated with a polynomial. J. Pure Appl. Algebra 117(118), 495–518 (1997)CrossRefMathSciNetGoogle Scholar
  33. 33.
    Saito M.: On microlocal b-function. Bull. Soc. Math. France 122(2), 163–184 (1994)zbMATHMathSciNetGoogle Scholar
  34. 34.
    Saito, M., Sturmfels, B., Takayama, N.: Gröbner deformations of hypergeometric differential equations. Springer, Berlin (2000)zbMATHGoogle Scholar
  35. 35.
    Schindelar, K., Levandovskyy, V., Zerz, E.: Exact linear modeling using Ore algebras. J. Symb. Comput. 2010 (in press)Google Scholar
  36. 36.
    Schulze M.: A normal form algorithm for the Brieskorn lattice. J. Symb. Comput. 38(4), 1207–1225 (2004)CrossRefMathSciNetGoogle Scholar
  37. 37.
    Shibuta, T.: An algorithm for computing multiplier ideals. (2008)
  38. 38.
    Takayama, N.: kan/sm1, a Gröbner engine for the ring of differential and difference operators. (2003)
  39. 39.
    Torrelli, T.: Logarithmic comparison theorem and D-modules: an overview. In: Singularity theory, pp. 995–1009. World Science Publication, Hackensack (2007)Google Scholar
  40. 40.
    Tsai H., Leykin A. (2006) D-modules package for Macaulay 2 – algorithms for D–modules. (2006)
  41. 41.
    Varchenko A.N.: Asymptotic Hodge structure on vanishing cohomology. Izv. Akad. Nauk SSSR Ser. Mat. 45(3), 540–591 (1981)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  • Daniel Andres
    • 1
  • Michael Brickenstein
    • 2
  • Viktor Levandovskyy
    • 1
  • Jorge Martín-Morales
    • 3
    • 4
  • Hans Schönemann
    • 5
  1. 1.Lehrstuhl D für MathematikRWTH AachenAachenGermany
  2. 2.Mathematisches Forschungsinstitut OberwolfachOberwolfach-WalkeGermany
  3. 3.Department of Mathematics, I.U.M.A.University of ZaragozaSaragossaSpain
  4. 4.Centro Universitario de la Defensa de ZaragozaZaragozaSpain
  5. 5.Fachbereich MathematikTU KaiserslauternKaiserslauternGermany

Personalised recommendations