Mathematics in Computer Science

, Volume 4, Issue 1, pp 113–137 | Cite as

On the Topology of Real Algebraic Plane Curves

  • Jinsan Cheng
  • Sylvain Lazard
  • Luis Peñaranda
  • Marc PougetEmail author
  • Fabrice Rouillier
  • Elias Tsigaridas


We revisit the problem of computing the topology and geometry of a real algebraic plane curve. The topology is of prime interest but geometric information, such as the position of singular and critical points, is also relevant. A challenge is to compute efficiently this information for the given coordinate system even if the curve is not in generic position. Previous methods based on the cylindrical algebraic decomposition use sub-resultant sequences and computations with polynomials with algebraic coefficients. A novelty of our approach is to replace these tools by Gröbner basis computations and isolation with rational univariate representations. This has the advantage of avoiding computations with polynomials with algebraic coefficients, even in non-generic positions. Our algorithm isolates critical points in boxes and computes a decomposition of the plane by rectangular boxes. This decomposition also induces a new approach for computing an arrangement of polylines isotopic to the input curve. We also present an analysis of the complexity of our algorithm. An implementation of our algorithm demonstrates its efficiency, in particular on high-degree non-generic curves.


Singular Point Extreme Point Algebraic Curf Interval Arithmetic Algebraic Computation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arnon D.S., Collins G.E., McCallum S.: Cylindrical algebraic decomposition ii: an adjacency algorithm for the plane. SIAM J. Comput. 13(4), 878–889 (1984)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Alefeld G., Herzberger J.: Introduction to Interval Computations. Academic Press, New York (1983)zbMATHGoogle Scholar
  3. 3.
    Arnon D., McCallum S.: A polynomial time algorithm for the topological type of a real algebraic curve. J. Symb. Comput. 5, 213–236 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Alberti L., Mourrain B., Wintz J.: Topology and arrangement computation of semi-algebraic planar curves. Comput. Aided Geom. Des. 25(8), 631–651 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Burnikel, C., Funke, S., Mehlhorn, K., Schirra, S., Schmitt, S.: A separation bound for real algebraic expressions. In: Proc. 9th Annual European Symposium on Algorithms. LNCS, vol. 2161, pp. 254–265. Springer, Berlin (2001)Google Scholar
  6. 6.
    Bardet, M., Faugére, J.-C., Salvy, B.: On the complexity of Gröbner basis computation of semi-regular overdetermined algebraic equations. In: International Conference on Polynomial System Solving, November 2004, pp. 71–74. Proceedings of a conference held in Paris, France in honor of Daniel LazardGoogle Scholar
  7. 7.
    Birman J.: Braids, Links, and Mapping Class Groups. Princeton University Press, Princeton (1975)zbMATHGoogle Scholar
  8. 8.
    Basu, S., Pollack, R., Roy, M.-R.: Algorithms in Real Algebraic Geometry. Algorithms and Computation in Mathematics, vol. 10, 2nd edn. Springer, Berlin (2006)Google Scholar
  9. 9.
    Benedetti R., Risler J.J.: Real Algebraic and Semi-algebraic Sets, Actualites Mathematiques. Hermann, Paris (1990)Google Scholar
  10. 10.
    Brown C.W.: Improved projection for cylindrical algebraic decomposition. J. Symb. Comput. 32(5), 447–465 (2001)zbMATHCrossRefGoogle Scholar
  11. 11.
    Brown, C.W.: Contructing cylindrical algebraic decomposition of the plane quickly (2002). Manuscript
  12. 12.
    Burr, M., Choi, S.W., Galehouse, B., Yap, C.: Complete subdivision algorithms, ii: Isotopic meshing of singular algebraic curves. In: Proc. Intl. Symp. on Symbolic & Algebraic Computation (ISSAC 2008) (2008)Google Scholar
  13. 13.
    Buchberger, B.: Gröbner bases: an algorithmic method in polynomial ideal theory. Recent trends in multidimensional systems theory. Reider ed. Bose (1985)Google Scholar
  14. 14.
    Canny J.: The Complexity of Robot Motion Planning. MIT Press, Cambridge (1988)Google Scholar
  15. 15.
    CGAL: Computational Geometry Algorithms Library.
  16. 16.
    Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry. Graduate Texts in Mathematics, vol. 185, 2nd edn. Springer, New York (2005)Google Scholar
  17. 17.
    Cheng, J., Lazard, S., Peñaranda, L., Pouget, M., Rouillier, F., Tsigaridas, E.: On the topology of planar algebraic curves. In: Proc. of the 24th European Workshop on Computational Geometry, March 2008Google Scholar
  18. 18.
    Coste M., Roy M.F.: Thom’s lemma, the coding of real algebraic numbers and the computation of the topology of semi-algebraic sets. J. Symb. Comput. 5(1/2), 121–129 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Diochnos D.I., Emiris I.Z., Tsigaridas E.P.: On the complexity of real solving bivariate systems. In: Brown, C.W. (ed.) Proc. Int. Symp. Symbolic and Algebraic Computation, pp. 127–134. Waterloo, Canada (2007)Google Scholar
  20. 20.
    Eigenwilling, A., Kerber, M.: Exact and efficient 2d-arrangements of arbitrary algebraic curves. In: Proc. 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA08), San Francisco, USA, January 2008, pp. 122–131. ACM-SIAM, ACM/SIAM (2008)Google Scholar
  21. 21.
    Eigenwillig A., Kettner L., Krandick W., Mehlhorn K., Schmitt S., Wolpert N.: A Descartes Algorithm for Polynomials with Bit-Stream Coefficients. In: Ganzha, V., Mayr, E., Vorozhtsov, E. (eds) CASC. LNCS, vol. 3718, pp. 138–149. Springer, Berlin (2005)Google Scholar
  22. 22.
    Eigenwillig, A., Kerber, M., Wolpert, N.: Fast and exact geometric analysis of real algebraic plane curves. In: Brown, C.W. (ed.) Proc. Int. Symp. Symbolic and Algebraic Computation, Waterwloo, Canada, 2007, pp. 151–158. ACM (2007)Google Scholar
  23. 23.
    Emiris I.Z., Mourrain B., Tsigaridas E.P.: Real Algebraic Numbers: Complexity Analysis and Experimentation. In: Hertling, P., Hoffmann, C., Luther, W., Revol, N. (eds) Reliable Implementations of Real Number Algorithms: Theory and Practice. LNCS, vol. 5045, pp. 57–82. Springer, Berlin (2008)CrossRefGoogle Scholar
  24. 24.
    Eigenwillig, A., Sharma, V., Yap, C.K.: Almost tight recursion tree bounds for the Descartes method. In: Proc. Int. Symp. on Symbolic and Algebraic Computation, New York, NY, USA, 2006, pp. 71–78. ACM Press (2006)Google Scholar
  25. 25.
    Faugère J.-C.: A new efficient algorithm for computing Gröbner bases (F 4). J. Pure Appl. Algebra 139(1–3), 61–88 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Feng, H.: Decomposition and Computation of the Topology of Plane Real Algebraic Curves. Ph.d. thesis, The Royal Institute of Technology, Stockholm (1992)Google Scholar
  27. 27.
    FGb – A software for computing Gröbner bases. J.-C. Faugère.
  28. 28.
    Giusti M., Lecerf G., Salvy B.: A Gröbner free alternative for solving polynomial systems. J. Complex. 17(1), 154–211 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Greuel G.-M., Pfister G., Schönemann H.: Singular 3.0—a computer algebra system for polynomial computations. In: Kerber, M., Kohlhase, M. (eds) Symbolic Computation and Automated Reasoning. The Calculemus-2000 Symposium, pp. 227–233. A. K. Peters, Ltd., Natick (2001)Google Scholar
  30. 30.
    González-Vega L., El Kahoui M.: An improved upper complexity bound for the topology computation of a real algebraic plane curve. J. Complex. 12(4), 527–544 (1996)zbMATHCrossRefGoogle Scholar
  31. 31.
    González-Vega, L., Lombardi, H., Recio, T., Roy, M.-F.: Sturm-Habicht Sequence. In: Proc. Int. Symp. on Symbolic and Algebraic Computation, pp. 136–146 (1989)Google Scholar
  32. 32.
    González-Vega, L., Necula, I.: Efficient topology determination of implicitly defined algebraic plane curves. Comput. Aided Geom. Des. 19(9) (2002)Google Scholar
  33. 33.
    Hong H.: An efficient method for analyzing the topology of plane real algebraic curves. Math. Comput. Simul. 42(4–6), 571–582 (1996)zbMATHCrossRefGoogle Scholar
  34. 34.
    Kerber, M.: Analysis of real algebraic plane curves. Master’s thesis, MPII (2006)Google Scholar
  35. 35.
    Keyser, J., Ouchi, K., Rojas, M.: The exact rational univariate representation for detecting degeneracies. In: DIMACS Series in Discrete Mathematics and Theoretical Computer Science. AMS Press, Philadelphia (2005)Google Scholar
  36. 36.
    Labs, O.: A list of challenges for real algebraic plane curve visualization software. Manuscript (2008)Google Scholar
  37. 37.
    Lazard, D.: Gröbner bases, Gaussian elimination, and resolution of systems of algebraic equations. In: EUROCAL’83 European Computer Algebra Conference. LNCS, vol. 162, pp. 146–156. Springer, Berlin (1983)Google Scholar
  38. 38.
    Li, C., Pion, S., Yap, C.: Recent progress in exact geometric computation. J. Logic Algebraic Program. 64(1), 85–111 (2004). (Special issue on “Practical Development of Exact Real Number Computation”)Google Scholar
  39. 39.
    Lickteig T., Roy M.-F.: Sylvester-Habicht sequences and fast Cauchy index computation. J. Symb. Comput. 31(3), 315–341 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    McCallum S., Collins G.E.: Local box adjacency algorithms for cylindrical algebraic decompositions. J. Symb. Comput. 33(3), 321–342 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Mourrain B., Pion S., Schmitt S., Técourt J.-P., Tsigaridas E.P., Wolpert N.: Algebraic issues in computational geometry. In: Boissonnat, J.-D., Teillaud, M. (eds) Effective Computational Geometry for Curves and Surfaces. Mathematics and Visualization, Chap. 3, Springer, Berlin (2006)Google Scholar
  42. 42.
    Mourrain, B., Trébuchet, P.: Generalized normal forms and polynomial system solving. In: Proc. Int. Symp. Symbolic and Algebraic Computation, pp. 253–260 (2005)Google Scholar
  43. 43.
    Rouillier F.: Solving zero-dimensional systems through the rational univariate representation. J. Appl. Algebra Eng. Commun. Comput. 9(5), 433–461 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    RS – A software for real solving of algebraic systems. F. Rouillier.
  45. 45.
    Rouillier F., Zimmermann P.: Efficient isolation of polynomial real roots. J. Comput. Appl. Math. 162(1), 33–50 (2003)CrossRefMathSciNetGoogle Scholar
  46. 46.
    Sakkalis T.: The topological configuration of a real algebraic curve. Bull. Aust. Math. Soc. 43, 37–50 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    Sakkalis T., Farouki R.: Singular points of algebraic curves. J. Symb. Comput. 9(4), 405–421 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Strzebonski A.: Cylindrical algebraic decomposition using validated numerics. J. Symb. Comput. 41(9), 1021–1038 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  49. 49.
    Seidel, R., Wolpert, N.: On the exact computation of the topology of real algebraic curves. In: Proc 21st ACM Symposium on Computational Geometry, pp. 107–115 (2005)Google Scholar
  50. 50.
    Teissier, B.: Cycles évanescents, sections planes et conditions de Whitney. (french). In: Singularités à Cargèse (Rencontre Singularités Géom. Anal., Inst. Études Sci., Cargèse, 1972). Asterisque, vol. 7–8, pp. 285–362. Soc. Math. France, Paris (1973)Google Scholar
  51. 51.
    von zur Gathen J., Gerhard J.: Modern Computer Algebra, 2nd edn. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  52. 52.
    Yap C.K.: Fundamental Problems of Algorithmic Algebra. Oxford University Press, Oxford (2000)zbMATHGoogle Scholar
  53. 53.
    Yap, C.K.: Complete subdivision algorithms, I: intersection of Bézier curves. In: Amenta, N., Cheong, O. (eds.) Proceedings of the 22nd ACM Symposium on Computational Geometry, Sedona, Arizona, USA, June 5–7, 2006, pp. 217–226. ACM (2006)Google Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  • Jinsan Cheng
    • 1
  • Sylvain Lazard
    • 2
  • Luis Peñaranda
    • 2
  • Marc Pouget
    • 2
    Email author
  • Fabrice Rouillier
    • 3
    • 4
  • Elias Tsigaridas
    • 5
  1. 1.KLMM, Institute of Systems ScienceAMSS, Chinese Academy of SciencesBeijingChina
  2. 2.INRIA Nancy Grand Est, LORIA LaboratoryNancyFrance
  3. 3.INRIA Paris-RocquencourtParisFrance
  4. 4.LIP6 (Université Paris 6, CNRS)ParisFrance
  5. 5.Department of Computer ScienceAarhus UniversityAarhusDenmark

Personalised recommendations