Mathematics in Computer Science

, Volume 4, Issue 1, pp 45–66 | Cite as

Arrangements on Parametric Surfaces I: General Framework and Infrastructure

  • Eric Berberich
  • Efi Fogel
  • Dan Halperin
  • Kurt Mehlhorn
  • Ron Wein
Article

Abstract

We introduce a framework for the construction, maintenance, and manipulation of arrangements of curves embedded on certain two-dimensional orientable parametric surfaces in three-dimensional space. The framework applies to planes, cylinders, spheres, tori, and surfaces homeomorphic to them. We reduce the effort needed to generalize existing algorithms, such as the sweep line and zone traversal algorithms, originally designed for arrangements of bounded curves in the plane, by extensive reuse of code. We have realized our approach as the Cgal package Arrangement_on_surface_2. We define a compact and modular interface for our framework; for a given application a required small subset of the interface can be identified. Then, only this subset must be implemented. A companion paper describes concretizations for several types of surfaces and curves embedded on them, and applications. This is the first implementation of a generic algorithm that can handle arrangements on a large class of parametric surfaces.

Keywords

Computational geometry Arrangement of curves Parametric surface Cgal Robust geometric computing 

Mathematics Subject Classification (2010)

Primary 68U05 Secondary 14Q10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The Cgal Project: Cgal User and Reference Manual. Cgal Editorial Board, 3.7 edn. http://www.cgal.org/Manual/3.7/doc_html/cgal_manual/contents.html (2010)
  2. 2.
    Agarwal P.K., Sharir M.: Arrangements and their applications. In: Sack, J.-R., Urrutia, J. (eds) Handbook of Computational Geometry, chap. 2, pp. 49–119. Elsevier, Amsterdam (2000)CrossRefGoogle Scholar
  3. 3.
    Andrade M.V.A., Stolfi J.: Exact algorithms for circles on the sphere. Int. J. Comput. Geometry Appl. 11(3), 267–290 (2001)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Austern M.H.: Generic Programming and the STL. Addison-Wesley, New York (1999)Google Scholar
  5. 5.
    Bentley J.L., Ottmann T.: Algorithms for reporting and counting geometric intersections. IEEE Trans. Comput. 28(9), 643–647 (1979)MATHCrossRefGoogle Scholar
  6. 6.
    Berberich, E., Emeliyanenko, P.: Cgal’s curved kernel via analysis. Algorithms for complex shapes. Technical report ACS-TR-123203-04 (2008)Google Scholar
  7. 7.
    Berberich, E., Fogel, E., Halperin, D., Kerber, M., Setter, O.: Arrangements on parametric surfaces II: concretization and applications. Math. Comput. Sci. (2010, accepted)Google Scholar
  8. 8.
    Berberich, E., Fogel, E., Halperin, D., Mehlhorn, K., Wein, R.: Sweeping and maintaining two-dimensional arrangements on surfaces: a first step. In: Proceedings 15th Annual Eurpean Symposium on Algorithms (ESA), LNCS, vol. 4698, pp. 645–656. Springer-Verlag, Berlin (2007)Google Scholar
  9. 9.
    Berberich, E., Hemmer, M., Kettner, L., Schömer, K., Wolpert, N.: An exact, complete and efficient implementation for computing planar maps of quadric intersection curves. In: Proceedings of 21st Annual Symposium on Computational Geometry (SoCG), pp. 99–106. ACM Press, New York (2005)Google Scholar
  10. 10.
    Berberich, E., Kerber, M.: Exact arrangements on tori and Dupin cyclides. In: Proceedings of the 2008 ACM Symposium on Solid and Physical Modeling (SPM), pp. 59–66. ACM Press, New York (2008)Google Scholar
  11. 11.
    Brisson, E.: Representing geometric structures in d dimensions: topology and order. In: SCG ’89: Proceedings of the Fifth Annual Symposium on Computational Geometry, pp. 218–227. ACM, New York (1989)Google Scholar
  12. 12.
    Cazals F., Loriot S.: Computing the arrangement of circles on a sphere, with applications in structural biology. Comput. Geom. Theory Appl. 42(6–7), 551–565 (2009)MATHMathSciNetGoogle Scholar
  13. 13.
    Cazals F., Loriot S.: Computing the arrangement of circles on a sphere, with applications in structural biology. Comput. Geom. Theory Appl. 42(6–7), 551–565 (2009)MATHMathSciNetGoogle Scholar
  14. 14.
    de Castro P.M.M., Cazals F., Loriot S., Teillaud M.: Design of the CGAL 3D Spherical Kernel and application to arrangements of circles on a sphere. Comput. Geom. Theory Appl. 42(6–7), 536–550 (2009)MATHGoogle Scholar
  15. 15.
    Edelsbrunner H., Seidel R.: Voronoi diagrams and arrangements. Disc. Comput. Geom. 1, 25–44 (1986)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Eigenwillig, A., Kerber, M.: Exact and efficient 2D-arrangements of arbitrary algebraic curves. In: Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 122–131, Philadelphia, PA, USA. Society for Industrial and Applied Mathematics (SIAM) (2008)Google Scholar
  17. 17.
    Fabri A., Giezeman , Lutz Kettner G.-J., Schirra S., Schönherr S.: On the design of Cgal a computational geometry algorithms library. Softw. Pract. Exp. 30(11), 1167–1202 (2000)MATHCrossRefGoogle Scholar
  18. 18.
    Fogel E., Halperin D., Kettner L., Teillaud M., Wein R., Wolpert N.: Arrangements. In: Boissonnat, J.-D., Teillaud, M. (eds) Effective Computational Geometry for Curves and Surfaces, chap. 1, pp. 1–66. Springer-Verlag, Berlin (2007)Google Scholar
  19. 19.
    Fogel, E., Setter, O., Halperin, D.: Exact implementation of arrangements of geodesic arcs on the sphere with applications. In: Abstracts of the 24th European Workshop on Computational Geometry, pp. 83–86 (2008)Google Scholar
  20. 20.
    Fogel, E., Setter, O., Halperin, D.: Movie: Arrangements of geodesic arcs on the sphere. In: Proceedings of 24th Annual ACM Symposium on Computational Geometry (SoCG), pp. 218–219. ACM Press, New York (2008)Google Scholar
  21. 21.
    Gamma E., Helm R., Johnson R., Vlissides J.: Design Patterns—Elements of Reusable Object-Oriented Software. Addison-Wesley, New York (1999)Google Scholar
  22. 22.
    Halperin, D.: Arrangements. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, chap. 24, 2nd edn., pp. 529–562. Chapman & Hall/CRC (2004)Google Scholar
  23. 23.
    Halperin D., Shelton C.R.: A perturbation scheme for spherical arrangements with application to molecular modeling. Comput. Geom. Theory. Appl. 10, 273–287 (1998)MATHMathSciNetGoogle Scholar
  24. 24.
    Hemmer, M.: Exact computation of the adjacency graph of an arrangement of quadrics. Ph.D. thesis, Johannes-Gutenberg-Universität, Mainz, Germany (2008)Google Scholar
  25. 25.
    Hijazi, Y.O., Breuel, T.M.: Computing arrangements using subdivision and interval arithmetic. In: Proceedings of 6th International Conference on Curves and Surfaces, pp. 173–182 (2006)Google Scholar
  26. 26.
    Lazarus, F., Pocchiola, M., Vegter, G., Verroust, A.: Computing a canonical polygonal schema of an orientable triangulated surface. In: Proceedings of 17th Annual ACM Symposium on Computational Geometry (SoCG), pp. 80–89 (2001)Google Scholar
  27. 27.
    Mehlhorn, K., Näher, S.: Leda: A Platform for Combinatorial and Geometric Computing. Cambridge University Press, Cambridge (2000)Google Scholar
  28. 28.
    Mehlhorn K., Seel M.: Infimaximal frames: A technique for making lines look like segments. Int. J. Comput. Geometry Appl. 13(3), 241–255 (2003)MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Meyerovitch, M.: Robust, generic and efficient construction of envelopes of surfaces in three-dimensional space. In: Proceedings of 14th Annual European Symposium on Algorithms (ESA), LNCS, vol. 4168, pp. 792–803. Springer-Verlag, Berlin (2006)Google Scholar
  30. 30.
    Milenkovic V., Sacks E.: An approximate arrangement algorithm for semi-algebraic curves. Int. J. Comput. Geom. Appl. 17(2), 175–198 (2007)MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Setter, O., Sharir, M., Halperin, D.: Constructing two-dimensional Voronoi diagrams via divide-and-conquer of envelopes in space. In: Proceedings of 6th Annual International Symposium on Voronoi Diagrams in Science and Engineering (ISVD), pp. 43–52 (2009)Google Scholar
  32. 32.
    Wein R., Fogel E., Zukerman B., Halperin D.: Advanced programming techniques applied to Cgal’s arrangement package. Comput. Geom. Theory Appl. 38(1–2), 37–63 (2007) Special issue on Cgal MATHMathSciNetGoogle Scholar
  33. 33.
    Wein, R., Fogel, E., Zukerman, B., Halperin, D.: 2D arrangements. In: Cgal User and Reference Manual. Cgal Editorial Board, 3.7 edn. http://www.cgal.org/Manual/3.7/doc_html/cgal_manual/packages.html#Pkg:Arrangements2 (2010)

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  • Eric Berberich
    • 1
  • Efi Fogel
    • 1
  • Dan Halperin
    • 1
  • Kurt Mehlhorn
    • 2
  • Ron Wein
    • 1
  1. 1.School of Computer ScienceTel Aviv UniversityTel AvivIsrael
  2. 2.Max-Planck-Institut für InformatikSaarbrückenGermany

Personalised recommendations