Advertisement

Mathematics in Computer Science

, Volume 3, Issue 3, pp 331–347 | Cite as

Mathematical Context in Interactive Documents

  • A. M. Cohen
  • H. Cuypers
  • R. Verrijzer
Article

Abstract

In this paper we introduce the concept of an interactive mathematical document. We give a formal description of such a document, which enables us to introduce the notion of a context as user and time dependent information regarding both mathematical and personal data. We also describe the realization of interactive mathematical documents within the MathDox system developed at Eindhoven University of Technology.

Keywords

Adaptivity Interactive mathematical documents Context 

Mathematics Subject Classification (2000)

Primary 68Mxx Secondary 97Uxx 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. 1.
    Caprotti, O., Cohen, A.M., Cuypers, H., Riem, M.N., Sterk, H.: Using OpenMath servers for distributing mathematical computations. In: Wei Chi, Y., Sung-Chi, C., Jen-Chung, C. (eds.) Proceedings of the Fifth Asian Technology Conference in Mathematics. pp. 325–336 (2000)Google Scholar
  2. 2.
    Caprotti, O., Davenport, J., Dewar, M., Padget, J.: Mathematics on the (Semantic) NET. Lecture Notes in Computer Science, vol. 3053, pp. 213–224. http://monet.nag.co.uk/monet/ (2004)
  3. 3.
    Chaachoua, H., Nichaud, J., Bronner, A., Bouhineau, D.: APLUSIX, a learning environment for algebra, actual use and benefits. Proceeding of ICME-10: 10th International congress on Mathematical Education. http://aplusix.imag.fr (2004)
  4. 4.
    ConneXions. http://cnx.org
  5. 5.
    Corbalan G., Cuypers H., Paas F.: Het Leren van Lineaire Algebra: Effecten van Feedback op Motivatie en Efficiëntie van het Leren. Tijdschrift voor Didactiek der β-wetenschappen 26(1/2), 21–36 (2009)Google Scholar
  6. 6.
    CnXML, ConneXions markup language. http://cnx.org/aboutus/technology/cnxml
  7. 7.
    Cohen, A.M., Cuypers, H., Barreiro, E.R.: MathDox: mathematical documents on the web. In: Kohlhase, M. (ed.) OMDoc: an Open Markup Format for mathematical documents. pp. 262–265 (2006)Google Scholar
  8. 8.
    Cohen, A.M., Cuypers, H., Sterk, H.: Algebra Interactive. Springer, Berlin. An interactive version is under construction at http://dam02.win.tue.nl/mathadore/ida/bookframe.html (1999)
  9. 9.
    Cuypers, H., Cohen, A.M., Knopper, J.W., Verrijzer, R., Spanbroek, M.: MathDox—a system for interactive mathematics. In: Proceedings of World Conference on Educational Multimedia, Hypermedia and Telecommunications (EDMEDIA, pp. 5177–5182. MathDox, http://www.mathdox.org Manual, http://www.mathdox.org/player/ MathDox Formula Editor, http://mathdox.org/formulaeditor/ (2008)
  10. 10.
    Dahn, I.: Management of informal mathematical knowledge—lessons learned from the trial-solution project. Electronic information and communication in Mathematics, LNCS, pp. 29–43 (2003)Google Scholar
  11. 11.
    De Bra, P., Houben, G.J., Wu, H.: AHAM: a Dexter-based reference model for adaptive hypermedia. Proceedings of the tenth ACM Conference on Hypertext and Hypermedia: Returning to Our Diverse Roots, pp. 147–156 (1999)Google Scholar
  12. 12.
    De Bra, P.: Web-based educational hypermedia. In: Romero, C., Ventura, S. (eds.) Data Mining in E-Learning, WIT Press, Southampton, pp. 3–17 (2006)Google Scholar
  13. 13.
    Digital Mathematics Envirmonment. http://www.fi.uu.nl/dwo
  14. 14.
    Emilea-Stat. http://www.emilea.de
  15. 15.
    GAP—Groups, algorithms, programming—a system for computational discrete algebra. http://www.gap-system.org/gap.html
  16. 16.
    Gosling, J., Joy, B., Steele, G.: The Java Language Specification, 3rd edn., Addison-Wesley, Reading. http://java.sun.com (2005)
  17. 17.
    Halasz, F., Schwartz, M.: The dexter hypertext reference model. Commun. ACM 37(2), 30–39 (1994). http://java.sun.com/products/servlet/ Google Scholar
  18. 18.
  19. 19.
  20. 20.
    Kohlhase, M., (ed.): OMDoc: An Open Markup Format for Mathematical Documents. Springer, Berlin (2006)Google Scholar
  21. 21.
    Kohlhase, M., Müller, C.: Semantic technologies for Mathematical elearning. preprint, JEM workshop 6 (2009)Google Scholar
  22. 22.
    Kohlhase, M., Müller, C.: Panta Rhei. Wissens- und Erfahrungsmanagement LWA (Lernen, Wissensentdeckung und Adaptivität) Conference Proceedings, In: Alexander, H. (ed.) pp. 318–323 (2007)Google Scholar
  23. 23.
  24. 24.
  25. 25.
  26. 26.
  27. 27.
    Mathematica, Wolfram Research, Inc., Mathematica Edition: Version 7.0, Wolfram Research. http://www.wolfram.com (2008)
  28. 28.
    Mathematical Markup Language (MathML) Version 2.0. http://www.w3.org/TR/MathML2/
  29. 29.
    Mathematical Markup Language (MathML) Version 3.0 (proposal). http://www.w3.org/TR/MathML3/
  30. 30.
    Melis, E., Siekmann, J.: Activemath: an intelligent tutoring system for mathematics. In: Proceedings of the International Conference on Artificial Intelligence and Soft Computing, pp. 91–101. http://www.activemath.org
  31. 31.
  32. 32.
  33. 33.
  34. 34.
  35. 35.
    Sangwin, C.J., Grove, M.J.: STACK: addressing the needs of the neglected learners. In: Proceedings of the First WebALT Conference and Exhibition, pp. 81–95 (2006)Google Scholar
  36. 36.
    Walsh, N., Muellner, L.: DocBook: The Definitive Guide, 1st edn., O’Reilly, Sebastopol. 1999. http://www.oasis-open.org/docbook/
  37. 37.
    Wortel TU/e. http://wortel.tue.nl
  38. 38.
  39. 39.
  40. 40.
  41. 41.

Copyright information

© The Author(s) 2010

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations