Mathematics in Computer Science

, Volume 3, Issue 2, pp 159–172 | Cite as

Optimising Gröbner Bases on Bivium

  • Tobias Eibach
  • Gunnar Völkel
  • Enrico Pilz


Bivium is a reduced version of the stream cipher Trivium. In this paper we investigate how fast a key recovery attack on Bivium using Gröbner bases is. First we explain the attack scenario and the cryptographic background. Then we identify the factors that have impact on the computation time and show how to optimise them. As a side effect these experiments benchmark several Gröbner basis implementations. The optimised version of the Gröbner attack has an expected running time of 239.12 s, beating the attack time of our previous SAT solver attack by a factor of more than 330. Furthermore this approach is faster than an attack based on BDDs, an exhaustive key search, a generic time-memory trade-off attack and a guess-and-determine strategy.


Bivium Trivium Gröbner basis Stream cipher Algebraic attack Benchmark 


  1. 1.
    Maximov, A., Khovratovich, D.: New state recovery attack on RC4. Cryptology ePrint Archive, Report 2008/017. (2008)
  2. 2.
    Lu, Y., Meier, W., Vaudenay, S.: The conditional correlation attack: a practical attack on bluetooth encryption. CRYPTO 2005 (2005)Google Scholar
  3. 3.
    Maximov, A., Johansson, T., Babbage, S.: An improved correlation attack on A5/1. Select. Areas Cryptogr. vol. 3357, 1–18 (2004)Google Scholar
  4. 4.
    eSTREAM: eSTREAM—The ECRYPT Stream Cipher Project. (2008). Accessed 9 Jan 2008
  5. 5.
    eSTREAM: Call for Stream Cipher Primitives, version 1.3. (2005). Accessed 9 Jan 2008
  6. 6.
    Babbage, S., De Cannière, C., Canteaut, A., Cid, C., Gilbert, H., Johansson, T., Parker, M., Preneel, B., Rijmen, V., Robshaw, M.: The eSTREAM Portfolio, eSTREAM. (2008). Accessed 9 Jan 2008
  7. 7.
    De Cannière, C., Preneel, B.: TRIVIUM—a stream cipher construction inspired by block cipher design principles. eSTREAM, ECRYPT Stream Cipher Project, Report 2006/021. (2005)
  8. 8.
    Raddum, H.: Cryptanalytic results on TRIVIUM, eSTREAM, ECRYPT Stream Cipher Project, Report 2006/039. (2006)
  9. 9.
    Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299 (2009)Google Scholar
  10. 10.
    Aumasson, J-P., Dinur, I., Meier, W., Shamir, A.: Cube testers and key recovery attacks on reduced-round MD6 and trivium. FSE 2009. LNCS, vol. 5665, pp. 1–22 (2009)Google Scholar
  11. 11.
    Bardet, M., Faugère, J-C., Salvy, B., Yang, B-Y.: Asymptotic behaviour of the degree of regularity of semi-regular polynomial systems. MEGA 2005 (2005)Google Scholar
  12. 12.
    Buchberger, B.: Gröbner Bases: A short introduction for system theorists. Computer Aided Systems Theory—EUROCAST 2001. LNCS, vol. 2178, pp. 1–14 (2001)Google Scholar
  13. 13.
    Stein, W.: Sage Mathematics Software (Version 2.9.2), The SAGE Group. (2007). Accessed 9 Jan 2008
  14. 14.
    Greuel, G-M., Pfister, G., Schönemann, H.: Singular 3.0.4. A computer algebra system for polynomial computations. Centre for Computer Algebra, University of Kaiserslautern. (2007). Accessed 9 Jan 2008
  15. 15.
    Wolfram Research, Inc.: Mathematica Edition: Version 6.0.1. (2007). Accessed 9 Jan 2008
  16. 16.
    Grayson, D., Stillman, M.: Macaulay 2, a software system for research in algebraic geometry. Version 1.1 AMD64. (2007)
  17. 17.
    Bosma, W., Cannon, J., Playoust, C.: MAGMA computational algebra system. Vers. 2.14–10. (2008)
  18. 18.
    Brickenstein, M., Dreyer, A.: PolyBoRi: A framework for Gröbner basis computations with Boolean polynomials. In: Electronic Proceedings of the MEGA 2007—Effective Methods in Algebraic Geometry (2007)Google Scholar
  19. 19.
    Eibach, T., Pilz, E., Völkel, G.: Attacking bivium using SAT solvers. SAT’08—Theory and Applications of Satisfiability Testing. LNCS, vol. 4996, pp. 63–76. Springer (2008)Google Scholar
  20. 20.
    Eibach, T., Pilz, E., Steck, S.: Comparing and optimising two generic attacks on bivium. Proceedings of SASC’08—The State of the Art of Stream Ciphers, pp. 57–68, ECRYPT (2008)Google Scholar
  21. 21.
    Maximov, A., Biryukov, A.: Two trivial attacks on trivium. Select. Areas Cryptogr. vol. 4876, 36–55 (2007)Google Scholar
  22. 22.
    Biryukov, A., Shamir, A.: Cryptoanalytic time/memory/data tradeoffs for stream ciphers. ASIACRYPT 2000. LNCS, vol. 1976, pp. 1–13 (2000)Google Scholar
  23. 23.
    Eibach, T., Völkel, G.: Optimising Gröbner bases on bivium. Proceedings of SCC’08—First International Conference on Symbolic Computation and Cryptography, pp. 83–94. LMIB Beihang University (2008)Google Scholar
  24. 24.
    Cox D.A., Little J., O’Shea D.B.: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. Springer, New York (2007)zbMATHGoogle Scholar
  25. 25.
    Faugère J-C.: A new efficient algorithm for computing Gröbner bases (F 4). J. Pure Appl. Algebra 139, 61–88 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Faugère, J-C.: A new efficient algorithm for computing Gröbner bases without reduction to zero (F 5). Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation, ACM Special Interest Group on Symbolic and Algebraic Manipulation, pp. 75–83 (2002)Google Scholar
  27. 27.
    Brickenstein, M.: Slimgb: Gröbner bases with slim polynomials. Reports on Computer Algebra 35, ZCA, University of Kaiserslautern (2005)Google Scholar
  28. 28.
    Courtois, N., Bard, G.: Algebraic cryptanalysis of the data encryption standard. Cryptology ePrint Archive, Report 2006/402 (2006)Google Scholar
  29. 29.
    Krause, M.: BDD-Based cryptanalysis of keystream generators. EUROCRYPT 2002. LNCS, vol. 2332, pp. 239–237 (2002)Google Scholar
  30. 30.
    Bard, G., Courtois, N., Jefferson, C.: Efficient methods for conversion and solution of sparse systems of low-degree multivariate polynomials over GF(2) via SAT-solvers. Cryptology ePrint Archive, Report 2007/024 (2007)Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2009

Authors and Affiliations

  1. 1.Institute of Theoretical Computer ScienceUlm UniversityUlmGermany

Personalised recommendations