Advertisement

Some Properties of K-Frames in Quaternionic Hilbert Spaces

  • Hanen EllouzEmail author
Article
  • 20 Downloads
Part of the following topical collections:
  1. Spectral Theory and Operators in Mathematical Physics

Abstract

In the present paper, we discuss some properties of K-frames in quaternionic Hilbert spaces such as the invertibility of the frame operator as well as the interchangeability of two Bessel sequences. Further, we propose several approaches to construct K-frames and we show that a T-frame can be constructed from a K-frame by the perturbation of a bounded linear operator T. Finally, we study the stability of K-frames under some perturbations.

Keywords

Frames K-frames Bessel sequence Quaternionic Hilbert spaces 

Mathematics Subject Classification

42C15 

Notes

References

  1. 1.
    Adler, S.L.: Quaternionic Quantum Mechanics and Quantum Fields. Oxford University Press, New York (1995)zbMATHGoogle Scholar
  2. 2.
    Cahill, J., Casazza, P.G., Li, S.: Non-orthogonal fusion frames and the sparsity of fusion frame operators. J. Fourier Anal. Appl. 18, 287–308 (2012)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Casazza, P.G., Kutyniok, G.: Frames of Subspaces. Wavelets, Frames and Operator Theory. Contemporary Mathematics, vol. 345, pp. 87–113. American Mathematical Society, Providence (2004)CrossRefGoogle Scholar
  4. 4.
    Charfi, S., Jeribi, A., Walha, I.: Riesz basis property of families of nonharmonic exponentials and application to a problem of a radiation of a vibrating structure in a light fluid. Numer. Funct. Anal. Optim. 32(4), 370–382 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Charfi, S., Ellouz, H.: Riesz basis of eigenvectors for analytic families of operators and application to a non-symmetrical Gribov operator. Mediterr. J. Math. 15, 1–16 (2018)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Charfi, S., Ellouz, H.: Frame of exponentials related to analytic families operators and application to a non-self adjoint problem of radiation of a vibrating structure in a light fluid. Complex Anal. Oper. Theory 13, 839–858 (2019)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Charfi, S., Ellouz, H.: Frames for operators in quaternionic Hilbert spaces (Submitted) Google Scholar
  8. 8.
    Christensen, O.: An Introduction to Frames and Riesz Bases. Applied and Numerical Harmonic Analysis, 2nd edn. Birkhäuser, Basel (2016)zbMATHGoogle Scholar
  9. 9.
    Colombo, F., Gantner, J., Kimsey, David P.: Spectral Theory on the \(S\)-Spectrum for Quaternionic Operators. Operator Theory: Advances and Applications, 270, p. ix+356. Birkhäuser, Cham (2018)zbMATHGoogle Scholar
  10. 10.
    Daubechies, I., Grossmann, A., Meyer, Y.: Painless nonorthogonal expansions. J. Math. Phys. 24, 1271–1283 (1986)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Duffin, R.J., Schaeffer, A.C.: A class of nonharmonic Fourier series. Trans. Am. Math. Soc. 72, 341–366 (1952)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Ellouz, H., Feki, I., Jeribi, A.: On a Riesz basis of exponentials related to the eigenvalues of an analytic operator and application to a non-selfadjoint problem deduced from a perturbation method for sound radiation. J. Math. Phys. 54, 112101 (2013)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Ellouz, H., Feki, I., Jeribi, A.: On a Riesz basis of exponentials related to a family of analytic operators and application. J. Pseudo Differ. Oper. Appl. (2018).  https://doi.org/10.1007/s11868-018-0262-z CrossRefzbMATHGoogle Scholar
  14. 14.
    Ellouz, H., Feki, I., Jeribi, A.: Non-orthogonal fusion frames of an analytic operator and application to a one-dimensional wave control system. Mediterr. J. Math. 16, 52 (2019)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Găvruţa, L.: Frames for operators. Appl. Comput. Harmon. Anal. 32, 139–144 (2012)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Ghiloni, R., Moretti, V., Perotti, A.: Continuous slice functional calculus in quaternionic Hilbert spaces. Rev. Math. Phys. 25, 1350006 (2013)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Guo, X.: Canonical dual K-Bessel sequences and dual K-Bessel generators for unitary systems of Hilbert spaces. J. Math. Anal. Appl. 444, 598–609 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Jeribi, A.: Denseness, Bases and Frames in Banach Spaces and Applications. De Gruyter, Berlin (2018)CrossRefGoogle Scholar
  19. 19.
    Jia, M., Zhu, Y.-C.: Some results about the operator perturbation of a K-frame. Results Math. 73(4), 138 (2018)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Sharma, S.K., Goel, S.: Frames in quaternionic Hilbert spaces. J. Math. Phys. Anal. Geom. 15(3), 395–411 (2019)MathSciNetGoogle Scholar
  21. 21.
    Xiao, X., Zhu, Y., Găvruţa, L.: Some properties of K-frames in Hilbert spaces. Results Math. 63, 1243–1255 (2013)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Young, R.M.: An Introduction to Nonharmonic Fourier Series. Academic Press, London (1980)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of MathematicsFaculty of Sciences of SfaxSfaxTunisia

Personalised recommendations