Advertisement

Joint Similarity and Parameterizations of Dilations of Dual \((\Omega ,\mu )\)-Frame Pairs

  • Xunxiang GuoEmail author
Article
  • 34 Downloads

Abstract

In this paper, we study some properties on the dilations of dual \((\Omega ,\mu )\)-frame pairs. Firstly, we introduce the concepts of joint complementary \((\Omega ,\mu )\)-frames and canonical dual \((\Omega ,\mu )\)-frame dilations of a dual \((\Omega ,\mu )\)-frame pair associated with an analysis space. Then we prove that the pairs of joint complementary \((\Omega ,\mu )\)-frames of a given dual \((\Omega ,\mu )\)-frame pair associated with an analysis space are unique in the sense of joint similarity and the set of canonical dual \((\Omega ,\mu )\)-frame dilations of a given dual \((\Omega ,\mu )\)-frame pair associated with an analysis space are parameterized by a set of invertible diagonal operators. Finally we parameterize the set of canonical dual \((\Omega ,\mu )\)-frame dilations of all dual \((\Omega ,\mu )\)-frame pairs of a given \((\Omega ,\mu )\)-frame associated with an analysis space in terms of a set of invertible lower triangular operators.

Keywords

(\(\Omega , \mu \))-frame Dual (\(\Omega , \mu \))-frame pair Joint complementary (\(\Omega , \mu \))-frames Joint similarity Canonical dual (\(\Omega , \mu \))-frame dilation 

Mathematics Subject Classification

42C15 46B15 

Notes

References

  1. 1.
    Ali, S.T., Antoine, J.P., Gazeau, J.P.: Continuous frames in Hilbert spaces. Ann. Phys. 222, 1–37 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Askari-Hemmat, A., Dehghan, M.A., Radjabalipour, M.: Generalized frames and their redundancy. Proc. Am. Math. Soc. 129(4), 1143–1147 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ali, S.T., Antoine, J.P., Gazeau, J.P.: Coherent States, Wavelets and Their Generalizations. Springer, New York (2000)CrossRefzbMATHGoogle Scholar
  4. 4.
    Christensen, O.: An Introduction to Frames and Riesz Bases. Birkhäuser, Boston (2003)CrossRefzbMATHGoogle Scholar
  5. 5.
    Casazza, P.G., Han, D., Larson, D.R.: Frames for Banach spaces. Contemp. Math. 247, 149–182 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Duffin, R.J., Shaffer, A.C.: A class of nonharmonic Fourier series. Trans. Am. Math. Soc. 72, 341–366 (1952)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Daubechies, I., Grossmann, A., Meyer, Y.: Painless nonorthognal expansions. J. Math. Phys. 27, 1271–1283 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Daubchies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)CrossRefGoogle Scholar
  9. 9.
    Feichtinger, H.G., Strohmer, T.: Gabor Analysis and Algorithms: Theory and Applications. Birkhäuser, Boston (1998)CrossRefzbMATHGoogle Scholar
  10. 10.
    Foranasier, M., Rauhut, H.: Continuous frames, function spaces, and the discretization problem. J. Fourier Anal. Appl. 11(3), 245–287 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Grohs, P.: Continuous shearlet tight frames. J. Fourier Anal. Appl. 17(3), 506–518 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Grochenig, K.: Describing functions: atomic decompositions versus frames. Monatshefte fur Math. 112, 1–41 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gabardo, J.P., Han, D.: Frames associated with measurable space. Adv. Comput. Math. 18(3), 127–147 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Guo, X.: Operator characterizations, rigidity and constructions of \((\Omega,\mu )\)-frames. Numer. Funct. Anal. Optim. 39(3), 346–360 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Guo, X., Han, D.: Joint similarities and parameterizations for Naimark complementary frames. J. Math. Anal. Appl. 462(1), 148–156 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Han, D., Larson, D.: Bases, frames and group representations. Mem. Am. Math. Soc. 147(697) (2000)Google Scholar
  17. 17.
    Hernández, E., Weiss, G.: A First Course on Wavelets. CRC Press, Boca Raton (1996)CrossRefzbMATHGoogle Scholar
  18. 18.
    Heil, C., Walnut, D.: Continuous and discrete wavelet transforms. SIAM Rev. 31, 628–666 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Kaiser, G.: A Friendly Guide to Wavelets. Springer, Berlin (2010)zbMATHGoogle Scholar
  20. 20.
    Thirulogasanthar, K., Bahsoun, Wael: Continuous frames on Julia sets. J. Geom. Phys. 51, 183–194 (2004)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsSouthwestern University of Finance and EconomicsChengduPeople’s Republic of China

Personalised recommendations