Advertisement

Analytic Differential Operators on the Unit Disk

  • Robert CarlsonEmail author
Article
  • 9 Downloads

Abstract

Formally symmetric differential operators on weighted Hardy–Hilbert spaces are analyzed, along with adjoint pairs of differential operators. Eigenvalue problems for such operators are rather special, but include many of the classical Riemann and Heun equations. Symmetric minimal operators are characterized. A regular class whose leading coefficients have no zeros on the unit circle are shown to be essentially self-adjoint. Eigenvalue asymptotics are established. Some extensions to non-self-adjoint operators are also considered.

Keywords

Analytic differential operators Weighted Hardy space Self-adjoint differential operators 

Mathematics Subject Classification

47E05 47B25 34L05 34M03 

Notes

References

  1. 1.
    Ball, J., Bolotnikov, V.: Weighted Hardy spaces: shift invariant and coinvariant subspaces, linear systems and operator model theory. Acta Sci. Math. (Szeged) 79(3–4), 623–686 (2013)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Chalendar, I., Partington, J.R.: A class of quasicontractive semigroups acting on Hardy and weighted Hardy spaces. Semigroup Forum 95(2), 281–292 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Coddington, E., Levinson, N.: Theory of Ordinary Differential Equations. McGraw-Hill, New York (1955)zbMATHGoogle Scholar
  4. 4.
    Cowen, C., Macluer, B.: Composition Operators on Spaces of Analytic Functions. CRC Press, Boca Raton (1995)Google Scholar
  5. 5.
    Dunford, N., Schwartz, J.: Linear Operators: Part II. Wiley, Hoboken (1988)zbMATHGoogle Scholar
  6. 6.
    Gal, C., Gal, S., Goldstein, J.: Evolution Equations with a Complex Spatial Variable. World Scientific, Singapore (2014)CrossRefzbMATHGoogle Scholar
  7. 7.
    Kato, T.: Perturbation Theory for Linear Operators. Springer, New York (1995)CrossRefzbMATHGoogle Scholar
  8. 8.
    Royden, H.: Real Analysis. Macmillan, New York (1988)zbMATHGoogle Scholar
  9. 9.
    Shields, A.: Weighted shift operators and analytic function theory. In: Pearcy, C. (ed.) Mathematical Surveys 13: Topics in Operator Theory, American Mathematical Society, Providence, pp. 49–128 (1974)Google Scholar
  10. 10.
    Stork, W.: Selbstadjungierte differentialoperatoren ester ordnung in \(A_2(\mathbb{C} _0)\). Math Annalen 217, 69–80 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Stork, W.: Selbstadjungierte Differentialoperatoren und nukleare (F)-Räume in \(A_2(\mathbb{C} _0)\). Math Zeitschrft 141, 169–183 (1975)CrossRefzbMATHGoogle Scholar
  12. 12.
    Villone, A.: Selfadjoint differential operators. Pac. J. Math. 35(2), 517–531 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Villone, A.: Selfadjoint extensions of symmetric differential operators. Pac. J. Math. 49(2), 569–577 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Villone, A.: Second order differential operators with self-adjoint extensions. Pac. J. Math. 58(1), 261–266 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Villone, A.: A class of symmetric differential operators with deficiency indices (1,1). Pac. J. Math. 59(1), 295–301 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Villone, A.: Selfadjoint extensions of symmetric operators. Rnd. Circ. Mat. Palermo 30, 321–340 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis. Cambridge University Press, New York (1990)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Colorado at Colorado SpringsColorado SpringsUSA

Personalised recommendations