Advertisement

Complex Analysis and Operator Theory

, Volume 13, Issue 3, pp 1143–1159 | Cite as

The Unified Transform Method to Initial-Boundary Value Problem for a Coupled Cubic–Quintic Nonlinear Schrödinger System

  • Beibei HuEmail author
  • Tiecheng Xia
  • Ning Zhang
Article
  • 33 Downloads

Abstract

In this study, we consider a coupled cubic–quintic nonlinear Schrödinger (CCQNLS) system, which is an important model in fiber-optic communication since this system can be used to describe the effect of quintic nonlinearities on the propagation of ultrashort optical soliton pulses in non-Kerr media. We solved the initial-boundary value problem of the CCQNLS system on the half-line by virtue of the unified transform method. And we manifest that the solution of the CCQNLS system can be represented by the unique solution of a \(3\times 3\) matrix Riemann–Hilbert problem formulated in the complex \(\lambda \)-plane. Furthermore, we demonstrate that a slice of spectral functions are not independent of each other, but rather to satisfy a paramount relations (so-called global relationship).

Keywords

Riemann–Hilbert problem Initial-boundary value problem Coupled cubic–quintic nonlinear Schrödinger system Unified transform method 

Mathematics Subject Classification

37K10 35Q51 35Q15 

Notes

Acknowledgements

This work was supported by the NSF of China under the Grant Nos. 11601055 and 11805114, NSF of Anhui Province of China under the Grant No. 1408085QA06, Education Department scientific research project of Anhui Province under the Grant No. KJ2017B10.

References

  1. 1.
    Fokas, A.S.: A unified transform method for solving linear and certain nonlinear PDEs. Proc. R. Soc. Lond. A 453, 1411–1443 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Fokas, A.S.: Integrable nonlinear evolution equations on the half-line. Commun. Math. Phys. 230, 1–39 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Fokas, A.S., Its, A.R., Sung, L.Y.: The nonlinear Schrödinger equation on the half-line. Nonlinearity 18, 1771–1822 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Lenells, J., Fokas, A.S.: Boundary-value problems for the stationary axisymmetric Einstein equations, a rotating disc. Nonlinearity 24, 177–206 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Lenells, J.: Boundary value problems for the stationary axisymmetric Einstein equations, a disk rotating around a black hole. Commun. Math. Phys. 304, 585–635 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Xia, B.Q., Fokas, A.S.: Initial-boundary value problems associated with the Ablowitz–Ladik system. Physica D. 364, 27–61 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Zhang, N., Xia, T.C., Hu, B.B.: A Riemann–Hilbert approach to the complex Sharma–Tasso–Olver equation on the half line. Commun. Theor. Phys. 68, 580–594 (2017)CrossRefzbMATHGoogle Scholar
  8. 8.
    Hu, B.B., Xia, T.C., Zhang, N.: A Riemann–Hilbert approach to the Kundu–Eckhaus equation on the half-line. arXiv:1711.02516
  9. 9.
    Deift, P., Zhou, X.: A steepest descent method for oscillatory Riemann–Hilbert problems. Ann. Math. 137, 295–368 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Lenells, J.: Initial-boundary value problems for integrable evolution equations with \(3\times 3\) Lax pairs. Phys. D 241, 857–875 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Lenells, J.: The Degasperis–Procesi equation on the half-line. Nonlinear Anal. 76, 122–139 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Xu, J., Fan, E.G.: The unified method for the Sasa–Satsuma equation on the half-line. Proc. R. Soc. A Math. Phys. Eng. Sci. 469, 1–25 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Xu, J., Fan, E.G.: The three wave equation on the half-line. Phys. Lett. A 378, 26–33 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Boutet de Monvel, A., Shepelsky, D.: The Ostrovsky–Vakhnenko equation by a Riemann–Hilbert approach. J. Phys. A Math. Theor. 48, 035204 (2015)Google Scholar
  15. 15.
    Boutet de Monvel, A., Shepelsky, D., Zielinski, L.: A Riemann–Hilbert approach for the Novikov equation. SIGMA 12, 095 (2016)Google Scholar
  16. 16.
    Liu, H., Geng, X.G.: Initial-boundary problems for the vector modified Korteweg–deVries equation via Fokas unified transform method. J. Math. Anal. Appl. 440, 578–596 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Tian, S.F.: Initial-boundary value problems for the general coupled nonlinear Schrödinger equation on the interval via the Fokas method. J. Differ. Equ. 262, 506–558 (2017)CrossRefzbMATHGoogle Scholar
  18. 18.
    Xu, J., Fan, E.G.: Initial-boundary value problem for the two-component nonlinear Schrödinger equation on the half-line. J. Nonlinear Math. Phys. 23, 167–189 (2016)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Yan, Z.Y.: An initial-boundary value problem for the integrable spin-1 Gross–Pitaevskii equations with a \(4\times 4\) Lax pair on the half-line. CHAOS 27, 053117 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Ma, W.X.: Riemann–Hilbert problems and N-soliton solutions for a coupled mKdV system. J. Geom. Phys. 132, 45–54 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Hu, B.B., Xia, T.C., Zhang, N., Wang, J.B.: Initial-boundary value problems for the coupled higher-order nonlinear Schrödinger equations on the half-line. Int. J. Nonlinear Sci. Numer. 19, 83–92 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Hu, B.B., Xia, T.C., Ma, W.X.: Riemann–Hilbert approach for an initial-boundary value problem of the two-component modified Korteweg–de Vries equation on the half-line. Appl. Math. Comput. 332, 148–159 (2018)MathSciNetGoogle Scholar
  23. 23.
    Hu, B.B., Xia, T.C.: A Fokas approach to the coupled modified nonlinear Schrödinger equation on the half-line. Math. Meth. Appl. Sci. 41, 5112–5123 (2018)CrossRefzbMATHGoogle Scholar
  24. 24.
    Hu, B.B., Xia, T.C., Ma, W.X.: Riemann-Hilbert approach for an initial-boundary value problem of an integrable coherently coupled nonlinear Schrödinger system on the half-line. E. Asian J. Appl. Math. 8, 531–548 (2018)CrossRefGoogle Scholar
  25. 25.
    Albuch, L., Malomed, B.A.: Transitions between symmetric and asymmetric solitons in dual-core systems with cubic–quintic nonlinearity. Math. Comput. Simul. 74, 312–322 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Radhakrishnan, R., Kundu, A., Lakshmanan, M.: Coupled nonlinear Schrödinger equations with cubic–quintic nonlinearity: integrability and soliton interaction in non-Kerr media. Phys. Rev. E 60, 3314–3323 (1999)CrossRefGoogle Scholar
  27. 27.
    Zong, F.D., Dai, C.Q., Zhang, J.F.: Optical solitary waves in fourth-order dispersive nonlinear schrödinger equation with self-steepening and self-frequency shift. Commun. Theor. Phys. 45, 721–726 (2006)CrossRefGoogle Scholar
  28. 28.
    Qi, F.H., Tian, B., Lü, X., Guo, R., Xue, Y.S.: Darboux transformation and soliton solutions for the coupled cubic–quintic nonlinear Schrödinger equations in nonlinear optics. Commun. Nonlinear Sci. Numer. Simul. 17, 2372–2381 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Zhang, Y., Nie, X.J., Zha, Q.L.: Rogue wave solutions for the coupled cubic–quintic nonlinear Schrödinger equations in nonlinear optics. Phys. Lett. A. 378, 191–197 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Qi, F.H., Ju, H.M., Meng, X.H., Li, J.: Conservation laws and Darboux transformation for the coupled cubic–quintic nonlinear Schrödinger equations with variable coefficients in nonlinear optics. Nonlinear Dyn. 77, 1331–1337 (2014)CrossRefzbMATHGoogle Scholar
  31. 31.
    Qi, F.H., Xu, X.G., Wang, P.: Rogue wave solutions for the coupled cubic–quintic nonlinear Schrödinger equations with variable coefficients. Appl. Math. Lett. 54, 60–65 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Geng, X.G., Liu, H.: The nonlinear steepest descent method to long-time asymptotics of the coupled nonlinear Schrödinger equation. J. Nolinear Sci. 28, 739–763 (2018)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.School of Mathematics and FinanceChuzhou UniversityAnhuiChina
  2. 2.Department of MathematicsShanghai UniversityShanghaiChina
  3. 3.Department of Basical CoursesShandong University of Science and TechnologyTaianChina

Personalised recommendations