Complex Analysis and Operator Theory

, Volume 13, Issue 3, pp 1093–1110 | Cite as

Damped Non-linear Coupled Schrödinger Equations

  • Tarek SaanouniEmail author


The initial value problem for a damped coupled non-linear Schrödinger system is investigated. Global existence and scattering are proved depending on the size of the damping coefficient.


Non-linear damped Schrödinger system Global existence Scattering 

Mathematics Subject Classification



  1. 1.
    Akrivis, G.D., Dougalis, V.A., Karakashian, O.A., Mckinney, W.R.: Numerical Approximation of Singular Solution of the Damped Non-linear Schrödinger Equation, ENUMATH 97 (Heidelberg), World Scientific River Edge, NJ, pp. 117-124 (1998)Google Scholar
  2. 2.
    Ambrosetti, A., Colorado, E.: Bound and ground states of coupled non-linear Schrödinger equations. C. R. Math. Acad. Sci. Paris 342, 453–458 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Barashenkov, I.V., Alexeeva, N.V., Zemlianaya, E.V.: Two and three dimensional oscillons in non-linear Faraday resonance. Phys. Rev. Lett. 89, 104101 (2002)CrossRefGoogle Scholar
  4. 4.
    Bartsch, T., Wang, Z.-Q.: Note on ground states of non-linear Schrödinger systems. J. Partial Differ. Equ. 19, 200–207 (2006)zbMATHGoogle Scholar
  5. 5.
    Bartsch, T., Wang, Z.-Q., Wei, J.: Bound states for a coupled Schrödinger system. J. Fixed Point Theory Appl. 2, 353–367 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Carles, R., Antonelli, P., Sparber, C.: On non-linear Schrdinger type equations with non-linear damping. Int. Math. Res. Not. 3, 740–762 (2015)zbMATHGoogle Scholar
  7. 7.
    Cazenave, T.: Semilinear Schrödinger Equations. Lecture Notes in Mathematics, vol. 10. New York University, Courant Institute of Mathematical sciences, New York (2003)zbMATHGoogle Scholar
  8. 8.
    Fibich, G.: Self-focusing in the damped non-linear Schrödinger equation. SIAM J. Appl. Math. 61(5), 1680–1705 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Goldman, M.V., Rypdal, K., Hafizi, B.: Dimensionality and dissipation in Langmuir collapse. Phys. Fluids 23, 945–955 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hasegawa, A., Tappert, F.: Transmission of stationary non-linear optical pulses in dispersive dielectric fibers II. Normal dispersion. Appl. Phys. Lett. 23, 171–172 (1973)CrossRefGoogle Scholar
  11. 11.
    Hioe, F.T., Salter, T.S.: Special set and solutions of coupled non-linear Schödinger equations. J. Phys. A Math. Gen. 35, 8913–8928 (2002)CrossRefzbMATHGoogle Scholar
  12. 12.
    Lions, P.L.: Symetrie et compacité dans les espaces de Sobolev. J. Funct. Anal. 49, 315–334 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Ma, L., Zhao, L.: Sharp thresholds of blow-up and global existence for the coupled non-linear Schrödinger system. J. Math. Phys. 49, 062103 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Nguyen, N.V., Tian, R., Deconinck, B., Sheils, N.: Global existence for a coupled system of Schrödinger equations with power-type non-linearities. J. Math. Phys. 54, 011503 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Ohta, M., Todorova, G.: Remarks on global existence and blowup for damped non-linear Schrödinger equations. Discret. Contin. Dyn. Syst. 23, 1313–1325 (2009)zbMATHGoogle Scholar
  16. 16.
    Payne, L.E., Sattinger, D.H.: Saddle points and instability of non-linear hyperbolic equations. Isr. J. Math. 22(3–4), 273–303 (1975)CrossRefzbMATHGoogle Scholar
  17. 17.
    Saanouni, T.: Global well-posedness of a damped Schrödinger equation in two space dimensions. Math. Methods Appl. Sci. 37(4), 488–495 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Saanouni, T.: A note on coupled non-linear Schrdinger equations. Adv. Non-linear Anal. 3(4), 247–269 (2014)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Saanouni, T.: On defocusing coupled non-linear Schrödinger equations. J. Abstr. Differ. Equ. Appl. 7(1), 7896 (2016)MathSciNetGoogle Scholar
  20. 20.
    Saanouni, T.: A note on focusing coupled non-linear Schrödinger equations. Appl. Anal. 95(9), 2063–2080 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Song, Xianfa: Stability and instability of standing waves to a system of Schrödinger equations with combined power-type non-linearities. J. Math. Anal. Appl. 366, 345–359 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Tao, T.: Non-linear dispersive equations: local and global analysis, CBMS regional series in mathematics, (2006)Google Scholar
  23. 23.
    Tsutsumi, M.: Nonexistence of global solutions to the Cauchy problem for the damped non-linear Schrödinger equations. SIAM J. Math. Anal. 15, 357–366 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Tsutsumi, M.: On global solutions to the initial-boundary value problem for the damped non-linear Schrödinger equations. J. Math. Anal. Appl. 145, 328–341 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Xu, Y.: Global well-posedness, scattering, and blowup for non-linear coupled Schrdinger equations in \({\mathbb{R}^3}\). Appl. Anal. 95(3), 483–502 (2016)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Zakharov, V.E.: Stability of periodic waves of finite amplitude on the surface of a deep fluid. Sov. Phys. J. Appl. Mech. Tech. Phys. 4, 190–194 (1968)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Faculty of Science and Literature of Uqlat AssgoorQassim UniversityBuraydahSaudi Arabia
  2. 2.Faculty of Science of Tunis, LR03ES04 Partial Differential Equations and applicationsUniversity of Tunis El ManarTunisTunisia

Personalised recommendations