Advertisement

Complex Analysis and Operator Theory

, Volume 13, Issue 2, pp 431–478 | Cite as

Cauchy–Fantappiè Integral Formula for Holomorphic Functions on Special Tube Domains in \(\mathbb {C}^2\)

  • N. Alexandrou
  • A. VidrasEmail author
Article
  • 64 Downloads

Abstract

Let \(T_{B}=\mathbb {R}^2\times i\{(y_1,y_2)\in \mathbb {R}^2 :y_1^2+y_2^2 <1\}\) be the tube in \(\mathbb {C}^2\) with base the imaginary disk \(B=i\{(y_1,y_2)\in \mathbb {R}^2 :y_1^2+y_2^2 <1\}\). The defining function of the tube is \(\Phi (\zeta ,\bar{\zeta } )=(\frac{\zeta _1-\bar{\zeta } _1}{ 2i})^2+(\frac{\zeta _2-\bar{\zeta } _2}{ 2i})^2-1 \), \(\zeta \in \mathbb {C}^2\). Let \(H^2(T_{B})\) be the space of holomorphic functions \(f(z)=\int \limits _{\mathbb {R}^2}h(t)e^{2\pi i z\cdot t}dt \), \(z\in T_{B}\), whenever the function h satisfies the estimate
$$\begin{aligned} \sup _{y\in B}\int \limits _{\mathbb {R}^2}\vert h(t)\vert ^2e^{-4\pi y\cdot t}dt \le A^2<+\infty . \end{aligned}$$
The main result of the present paper asserts that every function \(f\in H^2(T_{B})\) is represented by \(Cauchy\text {--}Fantappi\grave{e} \) formula supported on the boundary \( \partial T_{B}\). That is, for every \(z\in T_{B}\) one has that
$$\begin{aligned} f(z)=\frac{1}{(2\pi )^2}\int \limits _{\mathbb {R}^2\times iS^1} \frac{f(\zeta )\partial \Phi (\zeta , \bar{\zeta })\wedge \bar{\partial } \partial \Phi (\zeta , \bar{\zeta })}{ \langle \nabla \Phi (\zeta ,\bar{\zeta }), \zeta -z\rangle ^2}. \end{aligned}$$
The absence of Stokes’ theorem for unbounded domain is superseded by a separation of singularities type theorem allowing to express a function \(f\in H^2(T_{B})\) as a difference of two holomorphic functions \(f_1\in H^2(T_{(S_H^-)^{int}})\) and \(f_2\in H^2(T_{(S_H^+)^{int}})\), defined on suitable tubes \(T_{(S_H^-)^{int}}\) and \(T_{(S_H^+)^{int}}\), whose base contains a cone, and satisfying \(T_{B}=T_{(S_H^-)^{int}}\cap T_{(S_H^+)^{int}}\). It is proved that every function \(f_1\in H^2(T_{(S_H^-)^{int}})\) or \(f_2\in H^2(T_{(S_H^+)^{int}})\) is representable by \( Cauchy\text {--}Fantappi\grave{e}\) formula (and conversely). The main result then follows as a direct consequence of a duality argument.

Keywords

Generalized dual Integral representation 

Mathematics Subject Classification

32A35 32A40 32E99 

References

  1. 1.
    Aizenberg, L.: The general form of a continuous linear functional on the space of functions holomorphic in a convex region of \({\mathbb{C}}^{n}\). Dokl. Akad. Nauk SSSR 166, 1015–1018 (1966). (Russian)MathSciNetGoogle Scholar
  2. 2.
    Aizenberg, L.: The expansion of holomorphic functions of several complex variables in partial fractions. Sib. Math. Z. 8, 1124–1142 (1967). (Russian)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Aizenberg, L.: Linear convexity in \({\mathbb{C}}^n\) and separation of singularities of holomorphic functions. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astron. Phys. 15, 487–495 (1967)zbMATHGoogle Scholar
  4. 4.
    Aizenberg, L.: The duality in complex analysis. In: Proceedings of the Ashkelon Workshop on Complex Function Theory (1996). Israel Math. Conf. Proc., vol. 11, pp. 27–35. Bar-Ilan Univ., Ramat Gan (1997)Google Scholar
  5. 5.
    Aizenberg, L.: Separation of singularities for holomorphic functions. Anal. Math. Phys. 4(1–2), 13–21 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Aizenberg, L., Vidras, A.: Duality and the class of holomorphic functions representable by Carleman formula. In: Complex Analysis and Dynamical Systems V, Contemp. Math. vol. 591, pp. 1–24. AMS, Providence, RI (2013)Google Scholar
  7. 7.
    Aizenberg, L., Gotlib, V., Vidras, A.: Duality for Hardy spaces in domains of \({\mathbb{C}}^n\) and some applications. Complex Anal. Oper. Theory 8(6), 1341–1366 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Aizenberg, L., Yuzhakov, A.: Integral Representations and Residues in Multidimensional Complex Analysis, p. 283. AMS, Providence, RI (1983)CrossRefGoogle Scholar
  9. 9.
    Aronsajn, N.: Sur les décompositions des fonctions analytiques uniformes et sur leur applications. Acta Math. 65(1), 1–156 (1935)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Andersson, M., Passare, M., Sigurdsson, R.: Complex Convexity and Analytic Functions, Progress in Mathematics, vol. 225. Birkäuser, Basel (2004)CrossRefzbMATHGoogle Scholar
  11. 11.
    Dafni, G.: Hardy spaces on some pseudoconvex domains. J. Geom. Anal. 4(3), 273–316 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Duren, P.L.: The Theory of \({\cal{H}}^p \) Spaces. Dover Publ, Mineola (2000)Google Scholar
  13. 13.
    Gindikin, S.: Radon transforamtion for holomorphic functions of several complex variables connected with it integral formulas, Uspekhi Mat. Nauk 20, no. 3 (123), 237–239 (1965). Resume of the presentation at Moscow Mathematical Society (in Russian) Google Scholar
  14. 14.
    Gindikin, S.: Analytic functions in tubular regions. Dokl. Akad. Nauk SSSR 145, 1205–1208 (1962)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Havin, V.: The separation of the singularities of analytic functions. Dokl. Akad. Nauk SSSR 121, 239–242 (1958). (Russian)MathSciNetGoogle Scholar
  16. 16.
    Henkin, G.M.: The Method of Integral Representations in Complex Analysis Introduction to Complex Analysis. Encyclopedia of Mathematical Sciences, pp. 19–116. Springer, Berlin (1990)Google Scholar
  17. 17.
    Henkin, G.M., Cirka, E.M.: Boundary properties of holomorphic functions of several complex variables. In: Current Problems in Mathematics, vol. 4 (Russian), pp. 12–142. (errata insert) Akad. Nauk SSSR Vsesojuz. Inst. Naucn. i Tehn. Informacii, Moscow (1975) (Russian) Google Scholar
  18. 18.
    Kerzman, N., Stein, E.M.: The Szegö kernel in terms of Cauchy–Fantappiè kernels. Duke Math. J. 145(2), 197–224 (1978)CrossRefzbMATHGoogle Scholar
  19. 19.
    Kytmanov, B.: The Bochner–Martinelli integral and its Applications. Birkhausër Verlag, Basel (1995)CrossRefzbMATHGoogle Scholar
  20. 20.
    Lanzani, L., Stein, E.M.: The Cauchy-type integrals in several complex varibables. Bull. Math. Sci. 3(2), 241–285 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Lanzani, L., Stein, E.M.: The Cauchy-type integrals in \({\mathbb{C}}^n\) for domains with minimal smoothness. Adv. Math. 264, 776–830 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Lindholm, N.: A Paley–Wiener theorem for convex sets in \({\mathbb{C}}^n\). Bull. Sci. Math. 126(4), 289–314 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Martineau, A.: Sur la fonctionnelles analytiques et la transformation de Fourier–Borel. J. Anal. Math. 11, 1–164 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Martineau, A.: Sur la topologie des espaces des fonctions holomorphes. Math. Ann. 103, 62–88 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Meise, R., Vogt, D.: Introduction to functional analysis, Oxford Graduate Texts in Mathematics 2. The Clarendon Press, Oxford University Press, New York (1997)Google Scholar
  26. 26.
    Michael, E.: Continuous selections. I. Ann. Math. 63(2), 361–382 (1956)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Privalov, I.I.: Randeigenschaften Analytischer Functionen. Deutscher V.der Wiss (1956)Google Scholar
  28. 28.
    Rotkevich, A.S.: The Cauchy–Leray–Fantappiè integral in linearly convex domains, (Russian) Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 401 (2012), Issledovaniya po Lineinym Operatoram i Teorii Funktsii. 40, 172–188, 201. Translation in J. Math. Sci. (N. Y.) 194 no. 6, 693–702 (2013)Google Scholar
  29. 29.
    Sergeev, A.G., Vladimirov, V.S.: Complex Analysis in the Future tube, Several complex Variables II, (179-253), Encyclopedia of Mathematical Sciences. Springer (1994)Google Scholar
  30. 30.
    Stein, E., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University press, Princeton (1971)zbMATHGoogle Scholar
  31. 31.
    Stout, E.L.: Polynomial convexity, Progress in Mathematics, vol. 261. Birkhauser, Basel (2007)Google Scholar
  32. 32.
    Znamenskii, A.: A geometric criterion for strong linear convexity. Funkt. Anal. Appl. 13, 224–225 (1979)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of CyprusNicosiaCyprus

Personalised recommendations