Complex Analysis and Operator Theory

, Volume 13, Issue 3, pp 915–934 | Cite as

q-Szász–Durrmeyer Type Operators Based on Dunkl Analogue

  • Nadeem RaoEmail author
  • Abdul Wafi
  • Ana Maria Acu


The aim of present article is to introduce the q-Szász–Durrmeyer operators based on Dunkl analogue. We gave basic estimates with the help of q-calculus and then discussed basic convergence theorems. Next, we studied pointwise approximation results in terms of Peetre’s K-functional, second order modulus of continuity, Lipschitz type space and s th order Lipschitz type maximal function. Lastly, weighted approximation results and statistical approximation theorems are proved.


Dunkl analogue q-integers Szász operator Modulus of continuity 

Mathematics Subject Classification

41A25 41A30 41A35 41A36 


  1. 1.
    Aral, A., Gupta, V., Agarwal, R.P.: Applications of \(q\)-Calculus in Operator Theory. Springer, New York (2013)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bernstein, S.N.: D\(\acute{e}\)monstration du th\(\acute{e}\)or\(\grave{e}\)me de Weierstrass fond\(\acute{e}\)e sur le calcul de probabilit\(\acute{e}\)s. Commun. Soc. Math. Kharkow 13(2), 1–2 (1913)Google Scholar
  3. 3.
    Cheikh, B., Gaied, Y., Zaghouani, M.: A \(q\)-Dunkl-classical \(q\)-Hermite type polynomials. Georgian Math. J. 21(2), 125–137 (2014)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Derriennic, M.M.: Modified Bernstein polynomials and Jacobi polynomials in \(q\)-calculus. Rend. Circ. Mat. Palermo 76(2), 269–290 (2005)MathSciNetzbMATHGoogle Scholar
  5. 5.
    DeVore, R.A., Lorentz, G.G.: Constructive Approximation. Grudlehren derMathematischen Wissenschaften, Fundamental Principales of Mathematical Sciences. Springer, Berlin (1993)Google Scholar
  6. 6.
    Duman, O., Orhan, C.: Statistical approximation by positive linear operators. Studia Math. 16(2), 187–197 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gadjiev, A.D., Orhan, C.: Some approximation theorems via statistical convergence. Rocky Mountain J. Math. 32(1), 129–138 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Gadjiev, A.D.: The convergence problem for a sequence of positive linear operators on bounded sets and theorems analogous to that of P. P. Korovkin. Dokl. Akad. Nauk SSSR 218(5), (1974). Transl. Soviest Math. Dokl. 15(5), 1433–1436 (1974)Google Scholar
  9. 9.
    Gadjiev, A.D.: On P. P. Korovkin type theorems. Mat. Zametki 20, 781–786 (1976). Transl. Math. Notes (5–6), 995–998 (1978)MathSciNetGoogle Scholar
  10. 10.
    Gupta, V., Heping, W.: The rate of convergence of q-Durrmeyer operators for \(0<q<1\). Math. Methods Appl. Sci. 31(16), 1946–1955 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gupta, V., Agarwal, R.P.: Convergence Estimates in Approximation Theory. Springer, Cham (2014)CrossRefzbMATHGoogle Scholar
  12. 12.
    Gupta, V., Noor, M.A.: Convergence of derivatives for certain mixed Szász-Beta operators. J. Math. Anal. Appl. 321, 1–9 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    İbikli, E., Gadjieva, E.A.: The order of approximation of some unbounded functions by the sequence of positive linear operators. Turkish J. Math. 19(3), 331–337 (1995)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Içöz, G.: Bayram Çekim, Dunkl generalization of Szász operators via \(q\)-calculus. J. Inequal. Appl. 2015, 284 (2015)CrossRefzbMATHGoogle Scholar
  15. 15.
    Lenze, B.: On Lipschitz type maximal functions and their smoothness spaces. Nederl. Akad. Indag. Math. 50, 53–63 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Lupaş, A.: A \(q\)-analogue of the Bernstein operators. Seminar on Numerical and Statistical Calculus, vol. 9, pp. 85–98. University of Cluj-Napoca, Romania (1987)Google Scholar
  17. 17.
    Lupaş, A.: q-Analogues of Stancu operators. In: Lupaş, A., Gonska, H., Lupaş, L. (eds.) Mathematical Analysis and Approximation Theory, The 5th Romanian-German Seminar on Approximation Theory and its Applications, RoGer 2002, pp. 145–154. Sibiu, Burg Verlag (2002)Google Scholar
  18. 18.
    Özarslan, M.A., Aktuğlu, H.: Local approximation for certain king type operators. Filomat 27, 173–181 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Phillips, G.M.: Bernstein polynomials based on the \(q\)- integers, the heritage of P.L. Chebyshev, a Festschrift in honor of the 70th-birthday of Professor T.J. Rivlin. Ann. Numer. Math. 4, 511–518 (1997)MathSciNetGoogle Scholar
  20. 20.
    Rosenblum, M.: Generalized Hermite polynomials and the Bose-like oscillator calculus. Oper. Theory Adv. Appl. 73, 369–396 (1994)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Sucu, S.: Dunkl analogue of Sz\(\acute{a}\)sz operators. Appl. Math. Comput. 244, 42–48 (2014)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Shisha, O., Mond, B.: The degree of convergence of linear positive operators. Proc. Nat. Acad. Sci. USA 60, 1196–1200 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Szász, O.: Generalization of S. Bernstein’s polynomials to the infinite interval. J. Res. Natl. Bur. Stand. 45, 239–245 (1950)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsJamia Millia IslamiaNew DelhiIndia
  2. 2.Department of Mathematics and InformaticsLucian Blaga University of SibiuSibiuRomania

Personalised recommendations