Complex Analysis and Operator Theory

, Volume 13, Issue 3, pp 879–892 | Cite as

Bounded Composition Operators and Multipliers of Some Reproducing Kernel Hilbert Spaces on the Bidisk

  • Cheng ChuEmail author


We study the boundedness of composition operators on the bidisk using reproducing kernels. We show that a composition operator is bounded on the Hardy space \(H^2(\mathbb {D}^2)\) if some associated function is a positive kernel. This positivity condition naturally leads to the study of the sub-Hardy Hilbert spaces of the bidisk, which are analogs of de Branges–Rovnyak spaces on the unit disk. We discuss multipliers of those spaces and obtain some classes of bounded composition operators on the bidisk.


Composition operator Hardy space Reproducing kernel 

Mathematics Subject Classification

Primary 47B33 Secondary 47B32 


  1. 1.
    Agler, J., Mc Carthy, J.E.: Pick Interpolation and Hilbert Function Spaces. American Mathematical Society, Providence (2002)CrossRefGoogle Scholar
  2. 2.
    Alpay, D., Bolotnikov, V., Dijksma, A., Sadosky, C.: Hilbert spaces contractively included in the Hardy space of the bidisk. Positivity 5(1), 25–50 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337–404 (1950)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cowen, C.C., MacCluer, B.D.: Composition Operators on Spaces of Analytic Functions. CRC Press, Boca Raton (1995)zbMATHGoogle Scholar
  5. 5.
    de Branges, L., Rovnyak, J.: Square Summable Power Series. Holt, Rinehart, and Winston, New York (1966)zbMATHGoogle Scholar
  6. 6.
    Douglas, R.G.: On majorization, factorization, and range inclusion of operators on Hilbert space. Proc. Am. Math. Soc. 17, 413–415 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Jury, M.T.: Reproducing kernels, de Branges–Rovnyak spaces, and norms of weighted composition operators. Proc. Am. Math. Soc. 135(11), 3669–3675 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Lotto, B.A., Sarason, D.: Multipliers of de Branges–Rovnyak spaces. Indiana Univ. Math. J. 42(3), 907–920 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Paulsen, V.I., Raghupathi, M.: An Introduction to the Theory of Reproducing Kernel Hilbert Spaces. Cambridge University Press, Cambridge (2016)CrossRefzbMATHGoogle Scholar
  10. 10.
    Rudin, W.: Function Theory in Polydiscs. Benjamin, New York (1969)zbMATHGoogle Scholar
  11. 11.
    Sarason, D.: Sub-Hardy Hilbert Spaces in the Unit Disk, University of Arkansas Lecture Notes. Wiley, New York (1994)Google Scholar
  12. 12.
    Shapiro, J.H.: Composition Operators and Classical Function Theory, Universitext: Tracts in Mathematics. Springer, New York (1993)CrossRefGoogle Scholar
  13. 13.
    Singh, R.K., Sharma, S.D.: Composition operators and several complex variables. Bull. Aust. Math. Soc. 23(2), 237–247 (1981)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsVanderbilt UniversityNashvilleUSA

Personalised recommendations