Advertisement

Complex Analysis and Operator Theory

, Volume 13, Issue 3, pp 819–837 | Cite as

Dirichlet-to-Robin Operators via Composition Semigroups

  • Lars PerlichEmail author
Article

Abstract

We show well-posedness for an evolution problem associated with the Dirichlet-to-Robin operator for certain Robin boundary data. Moreover, it turns out that the semigroup generated by the Dirichlet-to-Robin operator is closely related to a weighted semigroup of composition operators on an appropriate Banach space of analytic functions.

Keywords

Composition operators Spaces of holomorphic functions Dirichlet-to-Neumann Dirichlet-to-Robin 

Mathematics Subject Classification

47B38 47B33 47D06 

Notes

Acknowledgements

I am grateful to my supervisor Ralph Chill, who brought this topic to my attention, for support and valuable suggestions which improved the presentation of the paper. I also thank an anonymous referee for his/her careful reading and helpful remarks.

References

  1. 1.
    Aizenberg, L., Reich, S., Shoikhet, D.: One-sided estimates for the existence of null points of holomorphic mappings in Banach spaces. J. Math. Anal. Appl. 203(1), 38–54 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Anderson, A., Jovovic, M., Smith, W.: Composition semigroups on BMOA and \(H^\infty \). J. Math. Anal. Appl. 449(1), 843–852 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Arendt, W., ter Elst, A.F.M.: Sectorial forms and degenerate differential operators. J. Oper. Theory 67(1), 33–72 (2012)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Arendt, W., Chalendar, I.: Generators of semigroups on Banach spaces inducing holomorphic semiflows, arXiv:1803.06552 (2018)
  5. 5.
    Arévalo, I., Oliva, M.: Semigroups of weighted composition operators in spaces of analytic functions, arXiv:1706.09001v1 (2017)
  6. 6.
    Avicou, C., Chalendar, I., Partington, J.R.: Analyticity and compactness of semigroups of composition operators. J. Math. Anal. Appl. 437(1), 545–560 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Berkson, E., Porta, H.: Semigroups of analytic functions and composition operators. Michigan Math. J. 25(1), 101–115 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Blasco, O., Contreras, M.D., Díaz-Madrigal, S., Martínez, J., Papadimitrakis, M., Siskakis, A.G.: Semigroups of composition operators and integral operators in spaces of analytic functions. Ann. Acad. Sci. Fenn. Math. 38(1), 67–89 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Contreras, M.D., Díaz Madrigal, S., Pommerenke, C.: On boundary critical points for semigroups of analytic functions. Math. Scand. 98(1), 125–142 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Duren, P., Schuster, A.: Bergman Spaces, Mathematical Surveys and Monographs, vol. 100. American Mathematical Society, Providence (2004)zbMATHGoogle Scholar
  11. 11.
    Duren, P.L.: Theory of \(H^{p}\) Spaces, Pure and Applied Mathematics, vol. 38. Academic Press, New York (1970)Google Scholar
  12. 12.
    Elin, M., Goryainov, V., Reich, S., Shoikhet, D.: Fractional iteration and functional equations for functions analytic in the unit disk. Comput. Methods Funct. Theory 2(2), 353–366 (2002). (On table of contents: 2004)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Emamirad, H., Sharifitabar, M.: On explicit representation and approximations of Dirichlet-to-Neumann semigroup. Semigroup Forum 86(1), 192–201 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    König, W.: Semicocycles and weighted composition semigroups on \(H^p\). Michigan Math. J. 37(3), 469–476 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Lax, P.D.: Functional Analysis, Pure and Applied Mathematics (New York). Wiley, New York (2002)Google Scholar
  16. 16.
    Poggi-Corradini, P.: Pointwise convergence on the boundary in the Denjoy–Wolff theorem. Rocky Mountain J. Math. 40(4), 1275–1288 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Pommerenke, C.: Boundary Behaviour of Conformal Maps, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 299. Springer-Verlag, Berlin (1992)Google Scholar
  18. 18.
    Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill Book Co., New York (1987)zbMATHGoogle Scholar
  19. 19.
    Siskakis, A.G.: Weighted composition semigroups on Hardy spaces, In: Proceedings of the Symposium on Operator Theory (Athens, 1985), vol. 84, pp. 359–371 (1986)Google Scholar
  20. 20.
    Siskakis, A.G.: Semigroups of Composition Operators on Spaces of Analytic Functions, A Review, Studies on Composition Operators (Laramie, WY, 1996), Contemp. Math., vol. 213, pp. 229–252. American Mathematical Society, Providence (1998)Google Scholar
  21. 21.
    Straube, E.J.: Harmonic and analytic functions admitting a distribution boundary value. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 11(4), 559–591 (1984)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für AnalysisTechnische Universität DresdenDresdenGermany

Personalised recommendations