Complex Analysis and Operator Theory

, Volume 13, Issue 2, pp 375–403 | Cite as

Fredholmness of Toeplitz Operators on the Fock Space

  • Robert FulscheEmail author
  • Raffael Hagger


The Fredholm property of Toeplitz operators on the p-Fock spaces \(F_\alpha ^p\) on \(\mathbb {C}^n\) is studied. A general Fredholm criterion for arbitrary operators from the Toeplitz algebra \(\mathcal {T}_{p,\alpha }\) on \(F_\alpha ^p\) in terms of the invertibility of limit operators is derived. This paper is based on previous work, which establishes corresponding results on the unit balls \(\mathbb {B}^n\) (Hagger in Integr Equ Oper Theory 89(4):519–556, 2017).


Toeplitz operators Fock spaces Essential spectrum Limit operators 

Mathematics Subject Classification

Primary 47B35 Secondary 47L80 47A53 47A10 



We would like to thank Wolfram Bauer for his continuous support and the anonymous referees for their valuable suggestions.


  1. 1.
    Al-Qabani, A., Virtanen, J.: Fredholm theory of Toeplitz operators on standard weighted Fock spaces. Ann. Acad. Sci. Fenn. M. 43 (2018)Google Scholar
  2. 2.
    Bauer, W.: Mean oscillation and Hankel operators on the Segal–Bargmann space. Integr. Equ. Oper. Theory 52, 1–15 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bauer, W., Isralowitz, J.: Compactness characterization of operators in the Toeplitz algebra of the Fock space \(F_\alpha ^p\). J. Funct. Anal. 263(5), 1323–1355 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Berger, C.A., Coburn, L.A.: Toeplitz operators on the Segal–Bargmann space. Trans. Am. Math. Soc. 301(2), 813–829 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Böttcher, A., Silbermann, B.: Analysis of Toeplitz Operators, 2nd edn. Springer, Berlin (2006)zbMATHGoogle Scholar
  6. 6.
    Böttcher, A., Wolf, H.: Asymptotic invertibility of Bergman and Bargmann space Toeplitz operators. Asymptot. Anal. 8, 15–33 (1994)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Böttcher, A., Wolf, H.: Spectral approximation for Segal–Bargmann space Toeplitz operators. In: Janas, J., Szafraniec, F., Zemánek, J. (eds.) Linear Operators, vol. 38, pp. 25–48. Banach Center Publications (1997)Google Scholar
  8. 8.
    Gohberg, I., Krein, M.G.: Systems of integral equations on the semi-axis with kernels depending on the difference of arguments. Usp. Mat. Nauk 13(5), 3–72 (1958)Google Scholar
  9. 9.
    Gryc, W.E., Kemp, T.: Duality in Segal–Bargmann spaces. J. Funct. Anal. 261, 1591–1623 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hagger, R.: The essential spectrum of Toeplitz operators on the unit ball. Integr. Equ. Oper. Theory 89(4), 519–556 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hagger, R., Lindner, M., Seidel, M.: Essential pseudospectra and essential norms of band-dominated operators. J. Math. Anal. Appl. 437(1), 255–291 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Janson, S., Peetre, J., Rochberg, R.: Hankel forms and the Fock space. Rev. Mat. Iberoam. 3(1), 61–138 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Lange, B.V., Rabinovich, V.S.: Systems of integral equations on the semi-axis with kernels depending on the difference of arguments. Usp. Mat. Nauk 13(5), 3–72 (1958)Google Scholar
  14. 14.
    Lindner, M.: Infinite Matrices and Their Finite Sections. Birkhäuser Verlag, Basel (2006)zbMATHGoogle Scholar
  15. 15.
    Lindner, M., Seidel, M.: An affirmative answer to a core issue on limit operators. J. Funct. Anal. 267(3), 901–917 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Mitkovski, M., Suárez, D., Wick, B.D.: The essential norm of operators on \({A}_\alpha ^p(\mathbb{B}_n)\). Integr. Equ. Oper. Theory 75, 197–233 (2013)CrossRefzbMATHGoogle Scholar
  17. 17.
    Perälä, A.I., Virtanen, J.A.: A note on the Fredholm properties of Toeplitz operators on weighted Bergman spaces with matrix-valued symbols. Oper. Matrices 5(1), 97–106 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Rabinovich, V., Roch, S., Silbermann, B.: Fredholm theory and finite section method for band-dominated operators. Integr. Equ. Oper. Theory 30(4), 452–495 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Rabinovich, V., Roch, S., Silbermann, B.: Limit Operators and Their Applications in Operator Theory. Birkhäuser Verlag, Basel (2004)CrossRefzbMATHGoogle Scholar
  20. 20.
    Simonenko, I.B.: Operators of convolution type in cones. Mat. Sb. 74(116), 298–313 (1967)MathSciNetGoogle Scholar
  21. 21.
    Simonenko, I.B.: On multidimensional discrete convolutions. Mat. Issled. 3(1), 108–127 (1968)MathSciNetGoogle Scholar
  22. 22.
    Stroethoff, K.: Hankel and Toeplitz operators on the Fock space. Mich. Math. J. 39, 3–16 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Suárez, D.: The essential norm of operators in the Toeplitz algebra on \({A}^p(\mathbb{B}_n)\). Indiana Univ. Math. J. 56(5), 2185–2232 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Upmeier, H.: Toeplitz Operators and Index Theory in Several Complex Variables. Birkhäuser, Basel (1996)zbMATHGoogle Scholar
  25. 25.
    Xia, J., Zheng, D.: Toeplitz operators and Toeplitz algebra with symbols of vanishing oscillation. J. Oper. Theory 76(1), 107–131 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Zaanen, A.: Introduction to Operator Theory in Riesz Spaces. Springer, Heidelberg (1997)CrossRefzbMATHGoogle Scholar
  27. 27.
    Zhu, K.: Analysis on Fock Spaces, Graduate Texts in Mathematics, vol. 263. Springer, New York (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für AnalysisLeibniz Universität HannoverHannoverGermany

Personalised recommendations