Advertisement

Complex Analysis and Operator Theory

, Volume 12, Issue 7, pp 1707–1727 | Cite as

Negative Definite Functions on the Space of Infinite Hermitian Matrices

  • Mohamed Bouali
Article
  • 51 Downloads

Abstract

In this paper we investigate a Lévy–Khinchin type integral formula of negative definite functions defined over the Olshanski spherical pair of infinite hermitian matrices.

Keywords

Functions of negative type Functions of positive type Spherical functions 

Mathematics Subject Classification

Primary 22E30 Secondary 43A35 43A85 43A90 

References

  1. 1.
    Berg, C., Christensen, C., Ressel, J.P.R.: Harmonic Analysis on Semigroups. Theory of Positive Definite and Related Functions. Springer, New York (1984)CrossRefGoogle Scholar
  2. 2.
    Berg, C., Forst, G.: Potentiel Theory on Locally Compact Abelian Groups. Springer-Verlag, Berlin, Heidelberg (1975)CrossRefGoogle Scholar
  3. 3.
    Bouali, M.: A Lévy–Khinchin formula for the space of infinite dimensional hermitian matrices. J. Lie Theory 18(1), 017–032 (2008)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bouali, M.: Lévy–Khinchin formula for the infinite symmetric group. Mathematische Zeitschrift 273(1–2), 303–310 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bouali, M.: Application des théorèmes de Minlos et Poincaré à l’étude asymptotique d’une intégrale orbitale. Ann. Fac. Sci. Toulouse Math. (6) 16, 49–70 (2007)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bouali, M.: Analyse harmonique en dimension infinie. Thèse de doctorat de l’université Pierre et Marie Curie - Paris VI (2006)Google Scholar
  7. 7.
    Borodin, A., Olshanski, G.: Infinite random matrices and ergodic measures. Commun. Math. Phys. 223, 87–123 (2001)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Faraut, J.: Asymptotic spherical analysis on the Heisenberg group. Colloq. Math. 118, 233–258 (2010)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Faraut, J.: Olshanski spherical pairs related to the Heisenberg group. Mosc. Math. J. 14, 63–81 (2014)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Faraut, J.: Infinite dimensional harmonic analysis and probability. In: Dani, S.G., Graczyk, P. (eds.) Probability Measures on Groups: Recent Directions and Trends, pp. 179–254. Tata Institute of Fundamental Research, Narosa (2006)zbMATHGoogle Scholar
  11. 11.
    Olshanski, G., Vershik, A.: Ergodic unitarily invariant measures on the space of infinite Hermitian matrices. Am. Math. Soc. Transl. 2(175), 137–175 (1996)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Olshanski, G., Vershik, A.: The problem of harmonic analysis on the infinite dimensional unitary group. J. Funct. Anal. 205, 464–524 (2003)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Olshanski, G., Borodin, A.: Infinite random matrices and ergodic measures. Commun. Math. Phys. 223(1), 87–123 (2001)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Olshanski, G., Borodin, A.: Unitary representations of infinite dimensional pairs (G,K) and the formalism of R. Howe. In: Vershik, A.M., Zhelobenko, D.P. (eds.) Representations of Lie groups and Related Topics. Advanced Studies in Contemporary Mathematics, vol. 7, pp. 269463. Gordon and Breach Science Publishers, New York (1990)Google Scholar
  15. 15.
    Rabaoui, M.: A Bochner type theorem for inductive limits of Gelfand pairs. Annales de l’institut Fourier 58(5), 1551–1573 (2008)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Rabaoui, M.: A Lévy–Khinchin formula for the space of infinite dimensional Square Complex Matrices. Bull. Sci. Math. 139, 283–300 (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Rabaoui, M.: On functions of negative type on the Olshanski spherial pair \((SL(\infty ), SU(\infty ))\). J. Lie Theory 2(1), 237–250 (2017)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Schoenberg, I.J.: Metric spaces and completely monotone functions. Ann. Math. Second Ser. 39(4), 811–841 (1938)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Thoma, E.: Die unzerlegbern, positive-definite klassenfunctionen der abzahlbar unendlichen, symmetrischen gruppe. Math. Z. 85, 40–61 (1964)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Voiculescu, D.: Repésentation factorielles de type \(II_1\) de \(U(1)\). J. Math. pures et appl 55, 1–22 (1976)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut Préparatoire aux études d’ingenieurs de Tunis, Faculté des Scinces de TunisCampus Universitaire El-ManarEl Manar, TunisTunisia

Personalised recommendations