Complex Analysis and Operator Theory

, Volume 12, Issue 7, pp 1697–1705 | Cite as

Free Mutual Information for Two Projections

  • Tarek HamdiEmail author


The present paper provides a proof of \(i^*(\mathbb {C}P+\mathbb {C}(I-P); \mathbb {C}Q+\mathbb {C}(I-Q))=-\chi _{{ orb}}(P,Q)\) for two projections PQ without any extra assumptions. An analytic approach is adopted to the proof, based on a subordination result for the liberation process of symmetries associated with PQ.


  1. 1.
    Belinschi, S.T., Bercovici, H.: Partially defined semigroups relative to multiplicative free convolution. Int. Math. Res. Not. 2, 65–101 (2005)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Biane, P., Dabrowski, Y.: Concavification of free entropy. Adv. Math. 234, 667–696 (2013)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Collins, B., Kemp, T.: Liberation of projections. J. Funct. Anal. 266, 1988–2052 (2014)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Demni, N., Hmidi, T.: Spectral distribution of the free Jacobi process associated with one projection. Colloq. Math. 137, 271–296 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Hamdi, T.: Liberation, free mutual information and orbital free entropy. Preprint (2017). arXiv:1702.05783
  6. 6.
    Hiai, F., Ueda, Y.: A log-Sobolev type inequality for free entropy of two projections. Ann. Inst. Henri Poincaré Probab. Stat. 45, 239–249 (2009)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Hiai, F., Miyamoto, T., Ueda, Y.: Orbital approach to microstate free entropy. Int. J. Math. 20, 227–273 (2009)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Izumi, M., Ueda, Y.: Remarks on free mutual information and orbital free entropy. Nagoya Math. J. 220, 45–66 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Lawler, G.F.: Conformally Invariant Processes in the Plane. Mathematical Surveys and Monographs, vol. 114. American Mathematical Society, Providence, RI (2005)Google Scholar
  10. 10.
    Ueda, Y.: Orbital free entropy, revisited. Indiana Univ. Math. J. 63, 551–577 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Voiculescu, D.V.: The analogues of entropy and of Fisher’s information measure in free probability theory. VI. Liberation and mutual free information. Adv. Math. 146, 101–166 (1999)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Zhong, P.: On the free convolution with a free multiplicative analogue of the normal distribution. J. Theor. Probab. 28, 1354–1379 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Business AdministrationQassim UniversityBuraydahSaudi Arabia
  2. 2.Laboratoire d’Analyse Mathématiques et Applications LR11ES11Université de Tunis El-ManarTunisTunisia

Personalised recommendations