Advertisement

Complex Analysis and Operator Theory

, Volume 12, Issue 7, pp 1657–1695 | Cite as

Semicircular-Like Laws and the Semicircular Law Induced by Orthogonal Projections

  • Ilwoo Cho
Article
  • 22 Downloads

Abstract

The main purpose of this paper is to construct semicircular elements from orthogonal projections. The construction, itself, would be the main result of this paper. Free distributional data and operator-theoretic properties of certain semicircular-like elements, and semicircular elements will be considered.

Keywords

Free probability Projections Weighted-semicircular elements Semicircular elements 

Mathematics Subject Classification

46L10 46L40 46L53 46L54 47L15 47L30 47L55 

References

  1. 1.
    Cho, I.: Free probability on \(W^{*}\)-dynamical systems determined by the \(GL_{2}(\mathbb{Q}_{p})\). Bolletino dell’Unione Math. Italiana. (2016).  https://doi.org/10.1007/s40574-016-0111-z CrossRefGoogle Scholar
  2. 2.
    Cho, I.: Free semicircular families in free product Banach \(*\)-algebras induced by \(p\)-Adic number fields over primes \(p\). Compl. Anal. Oper. Theory (2017). https://doi.org/10.1007/s11785-016-0625-5 MathSciNetCrossRefGoogle Scholar
  3. 3.
    Cho, I., Jorgensen, P. E.T.: Semicircular elements induced by \(p\)-Adic number fields. Opuscula Math. (2016) (To Appear)Google Scholar
  4. 4.
    Cho, I., Gillespie, T.: Free Probability on the Hecke algebra. Compl. Anal. Oper. Theoy (2014).  https://doi.org/10.1007/s11785-014-0403-1 MathSciNetCrossRefGoogle Scholar
  5. 5.
    Gillespie, T.: Prime number theorems for Rankin–Selberg \(L\) -functions over number fields. Sci. China Math. 54(1), 35–46 (2011)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Radulescu, F.: Random matrices, amalgamated free products and subfactors of the \(C^{*}\)-algebra of a free group of nonsingular index. Invent. Math. 115, 347–389 (1994)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Speicher, R.: Combinatorial theory of the free product with amalgamation and operator-valued free probability theory. Am. Math. Soc. Mem. 132(627) (1998).  https://doi.org/10.1090/memo/0627 MathSciNetCrossRefGoogle Scholar
  8. 8.
    Vladimirov, V.S., Volovich, I.V., Zelenov, E.I.: \(p\) -Adic Analysis and Mathematical Physics. Series on Soviet and East European Mathematics, vol. 1. World Scientific (1994). ISBN: 978-981-02-0880-6Google Scholar
  9. 9.
    Voiculescu, D., Dykemma, K., Nica, A.: Free Random Variables, vol. 1. CRM Monograph Series, Waterloo (1992)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics and Statistics, 421 Ambrose HallSaint Ambrose UniversityDavenportUSA

Personalised recommendations