Advertisement

Complex Analysis and Operator Theory

, Volume 12, Issue 7, pp 1637–1656 | Cite as

Characterization Theorems for the Quantum White Noise Gross Laplacian and Applications

  • Hafedh Rguigui
Article
  • 34 Downloads

Abstract

This paper reports on the characterization of the quantum white noise (QWN) Gross Laplacian based on nuclear algebra of white noise operators acting on spaces of entire functions with \(\theta \)-exponential growth of minimal type. First, we use extended techniques of rotation invariance operators, the commutation relations with respect to the QWN-derivatives and the QWN-conservation operator. Second, we employ the new concept of QWN-convolution operators. As application, we study and characterize the powers of the QWN-Gross Laplacian. As for their associated Cauchy problem it is solved using a QWN-convolution and Wick calculus.

Keywords

QWN-Gross Laplacian QWN-convolution operators Rotation invariance operators Wick product Cauchy problem 

Mathematics Subject Classification

Primary 60H40 Secondary 46A32 46F25 46G20 

References

  1. 1.
    Accardi, L., Ouerdiane, H., Smolyanov, O.G.: Lévy Laplacian acting on operators. Russ. J. Math. Phys. 10(4), 359–380 (2003)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Accardi, L., Smolyanov, O.G.: Transformations of Gaussian measures generated by the Lévy Laplacian and generalized traces. Dokl. Akad. Nauk SSSR 350, 5–8 (1996)zbMATHGoogle Scholar
  3. 3.
    Barhoumi, A., Ben Ammou, B.K., Rguigui, H.: Operator theory: quantum white noise approach. Quantum Stud. Math. Found. 2(2), 221–241 (2015)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Barhoumi, A., Lanconelli, A., Rguigui, H.: QWN-convolution operators with application to differential equations. Random Oper. Stoch. Equ. 22(4), 195–211 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Barhoumi, A., Ouerdiane, H., Rguigui, H.: QWN-Euler operator and associated cauchy problem. Infinite Dimens. Anal. Quantum Probab. Relat. Top. 15(1), 1250004 (20 pages) (2012)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Barhoumi, A., Ouerdiane, H., Rguigui, H.: Stochastic heat equation on algebra of generalized functions. Infinite Dimens. Anal. Quantum Probab. Relat. Top. 15(4), 1250026 (18 pages) (2012)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Ettaieb, A., Ouerdiane, H., Rguigui, H.: Powers of quantum white noise derivatives. Infinite Dimens. Anal. Quantum Probab. Relat. Top. 17, 1450018 [16 pages] (2014)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Ettaieb, A., Khalifa, N.T., Ouerdiane, H., Rguigui, H.: Higher powers of analytic operators and associated *-Lie algebra. Infinite Dimens. Anal. Quantum Probab. Relat. Top. 19(2), 1650013 (20 pages) (2016)zbMATHGoogle Scholar
  9. 9.
    Gannoun, R., Hachaichi, R., Ouerdiane, H., Rezgi, A.: Un théorème de dualité entre espace de fonction holomorphes à croissance exponentielle. J. Funct. Anal. 171, 1–14 (2000)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Gross, L.: Abstract Wiener spaces. In: Proceedings of the Fifth Berkeley Symposium Mathematical Statistics and Probability, vol. 2, pp. 31–42 (1967)Google Scholar
  11. 11.
    Hida, T.: A role of the Lévy Laplacian in the causal calculus of generalized white noise functionals. In: Cambanis, S., et al. (eds.) Stochastic Processes: A Festschrift in Honour of Gopinath Kallianpur. Springer, Berlin (1992)Google Scholar
  12. 12.
    Hida, T., Obata, N., Saitô, K.: Infinite dimensional rotation and laplacians in terms of white noise calculus. Nagoya Math. J. 128, 65–93 (1992)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Ji, U.C., Obata, N.: Annihilation-derivative, creation-derivative and representation of quantum martingales. Commun. Math. Phys. 286, 751–775 (2009)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Ji, U.C., Obata, N., Ouerdiane, H.: Analytic characterization of generalized Fock space operators as two-variable entire function with growth condition. Infinite Dimens. Anal. Quantum Probab. Relat. Top. 5(3), 395–407 (2002)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kuo, H.H.: On Laplacian Operator of Generalized Brownian Functionals. Lecture Notes in Mathematics 1203, pp. 119–128 (1986)CrossRefGoogle Scholar
  16. 16.
    Kuo, H.H.: White Noise Distribution Theory. CRC Press, Boca Raton (1996)zbMATHGoogle Scholar
  17. 17.
    Obata, N.: White Noise Calculus and Fock Spaces. Lecture Notes in Mathematics 1577. Spriger, bERLIN (1994)Google Scholar
  18. 18.
    Obata, N.: Quantum white noise calculus based on nuclear algebras of entire function. Trends Infin. Dimens. Anal. Quantum Probab. (Kyoto 2001) RIMS 1278, 130–157 (2001)MathSciNetGoogle Scholar
  19. 19.
    Ouerdiane, H., Rguigui, H.: QWN-conservation operator and associated wick differential equation. Commun. Stoch. Anal. 6(3), 437–450 (2012)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Piech, M.A.: Parabolic equations associated with the number operator. Trans. Am. Math. Soc. 194, 213–222 (1974)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Rebei, H.: On the one-mode quadratic Weyl operators. J. Math. Anal. Appl. 439(1), 135–153 (2016)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Rguigui, H.: Quantum Ornstein–Uhlenbeck semigroups. Quantum Stud. Math. Found. 2(2), 159–175 (2015)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Rguigui, H.: Quantum \(\lambda \)-potentials associated to quantum Ornstein–Uhlenbeck semigroups. Chaos Solitons Fractals 73, 80–89 (2015)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Rguigui, H.: Characterization of the QWN-conservation operator. Chaos Solitons Fractals 84, 41–48 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics, High School of Sciences and Technology of Hammam SousseUniversity of SousseHammam SousseTunisia
  2. 2.Department of MathematicsAL-Qunfudhah University college, Umm Al-Qura UniversityMeccaSaudi Arabia

Personalised recommendations