Complex Analysis and Operator Theory

, Volume 13, Issue 1, pp 241–255 | Cite as

Moment Infinitely Divisible Weighted Shifts

  • Chafiq Benhida
  • Raúl E. CurtoEmail author
  • George R. Exner


We say that a weighted shift \(W_\alpha \) with (positive) weight sequence \(\alpha : \alpha _0, \alpha _1, \ldots \) is moment infinitely divisible (MID) if, for every \(t > 0\), the shift with weight sequence \(\alpha ^t: \alpha _0^t, \alpha _1^t, \ldots \) is subnormal. Assume that \(W_{\alpha }\) is a contraction, i.e., \(0 < \alpha _i \le 1\) for all \(i \ge 0\). We show that such a shift \(W_\alpha \) is MID if and only if the sequence \(\alpha \) is log completely alternating. This enables the recapture or improvement of some previous results proved rather differently. We derive in particular new conditions sufficient for subnormality of a weighted shift, and each example contains implicitly an example or family of infinitely divisible Hankel matrices, many of which appear to be new.


Weighted shift Subnormal Completely monotone sequence Completely alternating sequence Moment infinitely divisible 

Mathematics Subject Classification

Primary 47B20 47B37 



The authors wish to express their gratitude to an anonymous referee for detecting an omission in the original statement of Theorem 3.1. The authors are also indebted to another anonymous referee for a detailed reading of the paper, and for several helpful suggestions which led to improvements in the presentation. Some of the proofs in this paper were obtained using calculations with the software tool Mathematica [22].


  1. 1.
    Agler, J.: Hypercontractions and subnormality. J. Oper. Theory 13, 203–217 (1985)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Athavale, A.: On completely hyperexpansive operators. Proc. Am. Math. Soc. 124, 3745–3752 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Athavale, A., Ranjekar, A.: Bernstein functions, complete hyperexpansivity and subnormality-I. Integral Equ. Oper. Theory 43, 253–263 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bram, J.: Subnormal operators. Duke Math. J. 22, 15–94 (1955)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bhatia, R.: Infinitely divisible matrices. Amer. Math. Monthly 113(3), 221–235 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Berg, C., Christensen, J.P.R., Ressel, P.: Harmonic Analysis on Semigroups. Springer, Berlin (1984)CrossRefzbMATHGoogle Scholar
  7. 7.
    Comtet, L.: Advanced Combinatorics. D. Reidel Publ. Co., Dordretch (1974)CrossRefzbMATHGoogle Scholar
  8. 8.
    Conway, J.B.: The Theory of Subnormal Operators. In: Mathematical Surveys and Monographs, vol. 36. American Mathematical Society, Providence, RI, pp. xvi\(+\)436 (1991). ISBN:0-8218-1536-9Google Scholar
  9. 9.
    Cowen, C., Long, J.: Some subnormal Toeplitz operators. J. Reine Angew. Math. 351, 216–220 (1984)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Cui, J., Duan, Y.: Berger measure for \(S(a, b, c, d)\). J. Math. Anal. Appl. 413, 202–211 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Curto, R.: Quadratically hyponormal weighted shifts. Integral Equ. Oper. Theory 13, 49–66 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Curto, R., Exner, G.R.: Berger measure for some transformations of subnormal weighted shifts. Integral Equ. Oper. Theory 84, 429–450 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Curto, R., Park, S.S.: \(k\)-hyponormality of powers of weighted shifts via Schur products. Proc. Am. Math. Soc. 131, 2761–2769 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Curto, R., Poon, Y.T., Yoon, J.: Subnormality of Bergman-like weighted shifts. J. Math. Anal. Appl. 308, 334–342 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Exner, G.R.: On \(n\)-contractive and \(n\)-hypercontractive operators. Integral Equ. Oper. Theory 58, 451–468 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Exner, G.R.: Aluthge transforms and \(n\)-contractivity of weighted shifts. J. Oper. Theory 61(2), 419–438 (2009)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Gellar, R., Wallen, L.J.: Subnormal weighted shifts and the Halmos-Bram criterion. Proc. Japan Acad. 46, 375–378 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Lee, S.H., Lee, W.Y., Yoon, J.: The mean transform of bounded linear operators. J. Math. Anal. Appl. 410, 70–81 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Sato, K.: Lévy processes and infinitely divisible distributions, Cambridge Studies in Advanced Mathematics, vol. 68, Cambridge University Press, Cambridge, (2004). (Reprint of 1999 translation of Kahou Katei (Japanese), Kinokuniya Press, 1990.)Google Scholar
  20. 20.
    Shields, A.: Weighted shift operators and analytic function theory. Math. Surv. 13, 49–128 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Sholapurkar, V.M., Athavale, A.: Completely and alternatingly hyperexpansive operators. J. Oper. Theory 43, 43–68 (2000)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Mathematica, Version 8.0, Wolfram Research Inc., Champaign, IL, (2011)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Chafiq Benhida
    • 1
  • Raúl E. Curto
    • 2
    Email author
  • George R. Exner
    • 3
  1. 1.UFR de MathématiquesUniversité des Sciences et Technologies de LilleVilleneuve d’Ascq CedexFrance
  2. 2.Department of MathematicsThe University of IowaIowa CityUSA
  3. 3.Department of MathematicsBucknell UniversityLewisburgUSA

Personalised recommendations