Advertisement

Complex Analysis and Operator Theory

, Volume 13, Issue 1, pp 223–239 | Cite as

The Weighted Composition Operators on the Large Weighted Bergman Spaces

  • Inyoung ParkEmail author
Article
  • 82 Downloads

Abstract

In this paper, we characterize bounded, compact or Schatten class weighted composition operators acting on Bergman spaces with the exponential type weights. Moreover, we give the proof of the necessary part for the boundedness of \(C_\phi \) on large weighted Bergman spaces given by Kriete and MacCluer (J Indiana Univ Math 1(3):755–788, 1992).

Keywords

Weighted composition operator Large weighted Bergman space Schatten class 

Mathematics Subject Classification

Primary 30H20 47B10 47B35 

Notes

Acknowledgements

The author would like to thank the referee for indicating various mistakes and giving helpful comments.

References

  1. 1.
    Asserda, S., Hichame, A.: Pointwise estimate for the Bergman kernel of the weighted Bergman spaces with exponential type weights. C. R. Acad. Sci. Paris Ser. I 352, 13–16 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arroussi, H., Park, I., Pau, J.: Schatten class Toeplitz operators acting on large weighted Bergman spaces. Studia Math. 352, 203–221 (2015)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Chalendar, I., Gallardo-Gutiérrez, E.A., Partington, J.R.: Weighted composition operators on the Dirichlet space: boundedness and spectral properties. Math. Annalen. 363, 1265–1279 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Contreras, M.D., Hernandez-Diaz, A.G.: Weighted composition operators on Hardy spaces. J. Math. Anal. Appl 263, 224–233 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cowen, C., MacCluer, B.: Composition Operators on Spaces of Analytic Functions. CRC Press, Boca Raton (1995)zbMATHGoogle Scholar
  6. 6.
    Cuckovic, Z., Zhao, R.: Weighted composition operators on the Bergman space. J. Lond. Math. Soc. 70, 499–511 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Halmos, P.: Measure Theory. Springer, Berlin (1974)zbMATHGoogle Scholar
  8. 8.
    Kriete, T., MacCluer, B.: Composition operators on large weighted Bergman spaces. J. Indiana Univ. Math. 41(3), 755–788 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Lin, P., Rochberg, R.: Hankel operators on the weighted Bergman spaces with exponential type weights. Integr. Equ. Oper. Theory 21, 460–483 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ohno, S., Zhao, R.: Weighted composition operators on the Bloch space. Bull. Austral. Math. Soc. 63, 177–185 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Oleinik, V.L.: Embedding theorems for weighted classes of harmonic and analytic functions. J. Soviet Math. 9, 228–243 (1978)CrossRefzbMATHGoogle Scholar
  12. 12.
    Pau, J., Peláez, J.A.: Embedding theorems and integration operators on Bergman spaces with rapidly decreasing weights. J. Funct. Anal. 259, 2727–2756 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Peláez, J.A., Rättyä, J.: Trace class criteria for Toeplitz and composition operators on small Bergman spaces. Adv. Math. 293, 606–643 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Shapiro, J.H.: The essential norm of a composition operator. Ann. Math. 125, 375–404 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Sharma, A.K., Ueki, S.I.: Composition operators between weighted Bergman spaces with admissible Bekollé weights. Banach J. Math. Anal. 8, 64–88 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Zhu, K.: Operator Theory in Function Spaces. Marcel Dekker, New York (1990)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.BK21-Mathematical Sciences DivisionPusan National UniversityBusanRepublic of Korea

Personalised recommendations