The Weighted Composition Operators on the Large Weighted Bergman Spaces
Article
First Online:
- 82 Downloads
Abstract
In this paper, we characterize bounded, compact or Schatten class weighted composition operators acting on Bergman spaces with the exponential type weights. Moreover, we give the proof of the necessary part for the boundedness of \(C_\phi \) on large weighted Bergman spaces given by Kriete and MacCluer (J Indiana Univ Math 1(3):755–788, 1992).
Keywords
Weighted composition operator Large weighted Bergman space Schatten classMathematics Subject Classification
Primary 30H20 47B10 47B35Notes
Acknowledgements
The author would like to thank the referee for indicating various mistakes and giving helpful comments.
References
- 1.Asserda, S., Hichame, A.: Pointwise estimate for the Bergman kernel of the weighted Bergman spaces with exponential type weights. C. R. Acad. Sci. Paris Ser. I 352, 13–16 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
- 2.Arroussi, H., Park, I., Pau, J.: Schatten class Toeplitz operators acting on large weighted Bergman spaces. Studia Math. 352, 203–221 (2015)MathSciNetzbMATHGoogle Scholar
- 3.Chalendar, I., Gallardo-Gutiérrez, E.A., Partington, J.R.: Weighted composition operators on the Dirichlet space: boundedness and spectral properties. Math. Annalen. 363, 1265–1279 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
- 4.Contreras, M.D., Hernandez-Diaz, A.G.: Weighted composition operators on Hardy spaces. J. Math. Anal. Appl 263, 224–233 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
- 5.Cowen, C., MacCluer, B.: Composition Operators on Spaces of Analytic Functions. CRC Press, Boca Raton (1995)zbMATHGoogle Scholar
- 6.Cuckovic, Z., Zhao, R.: Weighted composition operators on the Bergman space. J. Lond. Math. Soc. 70, 499–511 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
- 7.Halmos, P.: Measure Theory. Springer, Berlin (1974)zbMATHGoogle Scholar
- 8.Kriete, T., MacCluer, B.: Composition operators on large weighted Bergman spaces. J. Indiana Univ. Math. 41(3), 755–788 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
- 9.Lin, P., Rochberg, R.: Hankel operators on the weighted Bergman spaces with exponential type weights. Integr. Equ. Oper. Theory 21, 460–483 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
- 10.Ohno, S., Zhao, R.: Weighted composition operators on the Bloch space. Bull. Austral. Math. Soc. 63, 177–185 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
- 11.Oleinik, V.L.: Embedding theorems for weighted classes of harmonic and analytic functions. J. Soviet Math. 9, 228–243 (1978)CrossRefzbMATHGoogle Scholar
- 12.Pau, J., Peláez, J.A.: Embedding theorems and integration operators on Bergman spaces with rapidly decreasing weights. J. Funct. Anal. 259, 2727–2756 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
- 13.Peláez, J.A., Rättyä, J.: Trace class criteria for Toeplitz and composition operators on small Bergman spaces. Adv. Math. 293, 606–643 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
- 14.Shapiro, J.H.: The essential norm of a composition operator. Ann. Math. 125, 375–404 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
- 15.Sharma, A.K., Ueki, S.I.: Composition operators between weighted Bergman spaces with admissible Bekollé weights. Banach J. Math. Anal. 8, 64–88 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
- 16.Zhu, K.: Operator Theory in Function Spaces. Marcel Dekker, New York (1990)zbMATHGoogle Scholar
Copyright information
© Springer International Publishing AG, part of Springer Nature 2018