Advertisement

Complex Analysis and Operator Theory

, Volume 12, Issue 7, pp 1609–1616 | Cite as

Finite Two-Point Space Without Quantization on Noncommutative Space from a Generalized Fractional Integral Operator

  • Rami Ahmad El-Nabulsi
Article
  • 29 Downloads

Abstract

We show in this communication that if the Mellin transform is replaced by a fractional generalized integral on a noncommutative space and using the basic axioms of spectral triples, the two-point space problem is finite without passing to quantization.

Keywords

Generalized fractional integral Noncommutative space Two-point space 

Mathematics Subject Classification

26A33 49S05 58B10 

References

  1. 1.
    Ammann, B., Bar, C.: The Einstein–Hilbert action as a spectral action, Vortrag auf der Arbeitstagung “Das Standardmodell der Elementarteichenphysik unter mathematisch geometrischem Aspekt”, Hesselberg 1999, erschienen im Tagungsband: Scheck, F., Upmeiner, H. (eds.) Noncommutative Geometry and the Standard Model of Elementary Particle Physics, Springer Lecture Notes in Physics 596 (2002)Google Scholar
  2. 2.
    Baleanu, D., Agrawal, P.: On generalized fractional integral operators and the generalized Gauss hypergeometric functions. Abs. Appl. Anal. Article ID630840 (2014)Google Scholar
  3. 3.
    Bonilla, B., Kilbas, A.A., Rivero, M., Rodriguez, L., Trujillo, J.J.: Modified Bessel-type function and solution of differential and integral equations. Indian J. Pure Appl. Math. 31(1), 93–109 (2000)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Butera, S., Di Paola, M.: A physically based connection between fractional calculus and fractal geometry. Ann. Phys. 350, 146–158 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Calcagni, G.: Geometry of fractional spaces. Adv. Theor. Math. Phys. 16, 549–644 (2012)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Calcagni, G.: Geometry and field theory in multi-fractional spacetime. J. High. Energy Phys. 2012, 065 (2012)Google Scholar
  7. 7.
    Calcagni, G.: Fractional and noncommutative spacetimes. Phys. Rev. D 84, 125002–125017 (2011)CrossRefGoogle Scholar
  8. 8.
    Christensen, E., Ivan, C., Lapidus, M.L.: Dirac operators and spectral triples for some fractal sets built on curves. Adv. Math. 217, 42–78 (2008)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Connes, A.: Noncommutative Geometry. Academic Press, London (1994)zbMATHGoogle Scholar
  10. 10.
    Connes, A.: Gravity coupled with matter and the foundations of noncommutative geometry. Commun. Math. Phys. 182, 155–176 (1996)CrossRefGoogle Scholar
  11. 11.
    Di Paola, M., Zingales, M.: The multiscale stochastic model of fractional hereditary materials (FHM). In: IUTAM Symposium on Multiscale Problems in Stochastic Mechanics, Procedia IUTAM, vol. 6, pp. 50–59 (2013)Google Scholar
  12. 12.
    Di Paola, M., Failla, G., Pirrotta, A., Sofi, A., Zingales, M.: The mechanically based non-local elasticity: an overview of main results and future challenges. Philos. Trans. R. Soc. A371(1993), 20120433 (2013)MathSciNetCrossRefGoogle Scholar
  13. 13.
    El-Nabulsi, R.A.: Fractional elliptic operators from a generalized Glaeske–Kilbas–Saigo–Mellin transform. Func. Anal. Approx. Comp. 7(2), 29–33 (2015)MathSciNetzbMATHGoogle Scholar
  14. 14.
    El-Nabulsi, R.A., Wu, G.-C.: Fractional complexified field theory from Saxena–Kumbhat fractional integral, fractional derivative of order \((\alpha,\beta )\) and dynamical fractional integral exponent. Afr. Disp. J. Math. 13(2), 45–61 (2012)MathSciNetzbMATHGoogle Scholar
  15. 15.
    El-Nabulsi, R.A.: Glaeske–Kilbas–Saigo fractional integration and fractional Dixmier trace. Acta. Math. Viet. 37(2), 149–160 (2012)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Eridani, A., Gunawan, H., Nakai, E.: On generalized fractional integral operators. Sci. Math. Jap. 60(3), 539–550 (2004)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Goldfain, E.: Fractional dynamics and the standard model for particle physics. Commun. Nonlinear Sci. Numer. Simul. 13, 1397–1404 (2008)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Goldfain, E.: Complexity in quantum field theory and physics beyond the standard model. Chaos Solitons Fractals 28, 913–922 (2006)CrossRefGoogle Scholar
  19. 19.
    Goldfain, E.: Fractional dynamics, Cantorian spacetime and the gauge hierarchy problem. Chaos Solitons Fractals 22, 513–520 (2004)CrossRefGoogle Scholar
  20. 20.
    Guliyev, V. S., Ismayilova, A. F., Kucukaslan, A., Serbetci, A.: Generalized fractional integral operators on generalized local Morrey spaces. J. Func. Space 2015, Article ID594323, 8 pages (2015)Google Scholar
  21. 21.
    Guliyev, V.S., Mustafaev, R.C.: On generalized fractional integrals. Trans. Acad. Sci. Azerbaijan Ser. Phys. Tech. Math. Sci. 21(4), 63–71, 237 (2001)Google Scholar
  22. 22.
    Gunawan, H.: A note on the generalized fractional integral operators. J. Indones. Math. Soc. (MIHMI) 9(1), 39–43 (2003)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Hale, M.: Path integral quantization of finite noncommutative geometries. J. Geom. Phys. 44, 115–128 (2002)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Herrmann, R.: Fractional Calculus: An Introduction for Physicist. World Scientific, Singapore (2014)CrossRefGoogle Scholar
  25. 25.
    Herrmann, R.: Gauge invariance in fractional field theories. Phys. Lett. A 372, 5515–5522 (2008)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Katugampola, U.N.: New approach to a generalized fractional integral. Appl. Math. Comput. 218, 860–865 (2011)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier B.V., Amsterdam (2006)zbMATHGoogle Scholar
  28. 28.
    Kilbas, A.A., Trujillo, J.J.: Computation of fractional integrals via functions of hypergeometric and Bessel type. J. Comput. Appl. Math. 118, 223–239 (2000)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Kiryakova, V.: On two Saigo’s fractional integral operators in the class of univalent functions. Frac. Calc. Appl. Anal. 9(2), 159–176 (2006)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Lauscher, O., Reuter, M.: Fractal spacetime structure in asymptotically safe gravity. J. high. Energy. Phys. 10, 050 (2005)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Martinetti, P.: From Monge to Higgs: a survey of distance computations in noncommutative geometry. In: Proceedings of the Workshop “Noncommutative Geometry and Optimal Transpor”, Besancon November (2014). arXiv:1604.00499
  32. 32.
    Nakai, E.: On generalized fractional integrals. Taiwan. J. Math. 5, 587–602 (2001)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Nigmatullin, R.R., Le Mehaute, A.: Is there geometrical/physical meaning of the fractional integral with complex exponent? J. Non-Cryst. Solids 351(3336), 2888–2899 (2005)CrossRefGoogle Scholar
  34. 34.
    Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)zbMATHGoogle Scholar
  35. 35.
    Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)zbMATHGoogle Scholar
  36. 36.
    Rocco, A., West, B.J.: Fractional calculus and the evolution of fractal phenomenon. Physica A 265(34), 535–546 (1999)CrossRefGoogle Scholar
  37. 37.
    Saigo, M.: A certain boundary value problem for the Euler–Darboux equation. Math. Japon. 24, 377–385 (1979); II, ibid. 25, 211–220 (1980); III, ibid. 26–119 (1981)Google Scholar
  38. 38.
    Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Yverdon et alibi (1993)zbMATHGoogle Scholar
  39. 39.
    Srivastava, H.M., Saigo, M.: Multiplication of fractional calculus operators and boundary value problems involving the Euler–Darboux equation. J. Math. Anal. Appl. 121, 325–369 (1987)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Tatom, F.B.: The relationship between fractional calculus and fractals. Fractals 03, 217–229 (1995)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Vacaru, S.I.: Fractional dynamics from Einstein gravity, general solutions, and black holes. Int. J. Theor. Phys. 51, 1338–1359 (2012)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Vassilevich, D.: Can spectral action be a window to very high energies? J. Phys. Conf. Ser. 670, 012050 (2016)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Mathematics and Physics DivisionsAthens Institute for Education and ResearchAthensGreece

Personalised recommendations