Complex Analysis and Operator Theory

, Volume 12, Issue 3, pp 777–785 | Cite as

A Semigroup Approach to Fractional Poisson Processes

  • Carlos Lizama
  • Rolando Rebolledo


It is well-known that fractional Poisson processes (FPP) constitute an important example of a non-Markovian structure. That is, the FPP has no Markov semigroup associated via the customary Chapman–Kolmogorov equation. This is physically interpreted as the existence of a memory effect. Here, solving a difference-differential equation, we construct a family of contraction semigroups \((T_\alpha )_{\alpha \in ]0,1]}\), \(T_\alpha =(T_\alpha (t))_{t\ge 0}\). If \(C([0,\infty [,B(X))\) denotes the Banach space of continuous maps from \([0,\infty [\) into the Banach space of endomorphisms of a Banach space X, it holds that \(T_\alpha \in C([0,\infty [,B(X))\) and \(\alpha \mapsto T_\alpha \) is a continuous map from ]0, 1] into \(C([0,\infty [,B(X))\). Moreover, \(T_1\) becomes the Markov semigroup of a Poisson process.


Fractional Poisson process Markov semigroup Chapman–Kolmogorov equation 

Mathematics Subject Classification

39A13 39A14 39A06 39A60 47D06 47D99 


  1. 1.
    Arendt, W., Batty, C., Hieber, M., Neubrander, F.: Vector-Valued Laplace Transforms and Cauchy Problems. Monographs in mathematics, vol. 96. Birkhäuser, Basel (2001)CrossRefzbMATHGoogle Scholar
  2. 2.
    Barrachina, X., Peris, A.: Distributionally chaotic translation semigroups. J. Differ. Equ. Appl. 18(4), 751–761 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Beghin, L., Orsingher, E.: Fractional Poisson processes and related random motions. Electron. J. Probab. 14, 1790–1826 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Beghin, L., Orsingher, E.: Poisson-type processes governed by fractional and higher-order recursive differential equations. Electron. J. Probab. 15, 684–709 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Ethier, S.N., Kurtz, T.G.: Markov Processes: Characterization and Convergence. Wiley, New York (1986)CrossRefzbMATHGoogle Scholar
  6. 6.
    Gorenflo, R., Mainardi, F.: Fractional Calculus: Integral and Differential Equations of Fractional Order. CISM lecture notes (2008). arXiv:0805.3823
  7. 7.
    Grosse-Erdmann, K.G., Peris, A.: Linear Chaos. Universitext. Springer, Berlin (2011)CrossRefzbMATHGoogle Scholar
  8. 8.
    Jumarie, G.: Fractional master equation: non-standard analysis and Liouville–Riemann derivative. Chaos Solitons Fractals 12, 2577–2587 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Kilbas, A., Srivastava, H., Trujillo, J.: Theory and Applications of Fractional Differential Equations. North-Holland mathematics studies, vol. 204. Elsevier, Amsterdam (2006)CrossRefzbMATHGoogle Scholar
  10. 10.
    Laskin, N.: Fractional Poisson process. Commun. Nonlinear Sci. Numer. Simul. 8, 201–213 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Laskin, N.: Some applications of the fractional Poisson probability distribution. J. Math. Phys 50, 113513 (2009). MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Lizama, C.: The Poisson distribution, abstract fractional difference equations, and stability. Proc. Am. Math. Soc. 145(9), 3809–3827 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Mainardi, F., Gorenflo, R., Scalas, E.: A fractional generalization of the Poisson processes. Vietnam J. Math. 32, 53–64 (2004)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Mainardi, F., Gorenflo, R., Vivoli, A.: Beyond the Poisson renewal process: a tutorial survey. J. Comput. Appl. Math. 205, 725–735 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Meerschaert, M.M., Nane, E., Vellaisamy, P.: The fractional Poisson process and the inverse stable subordinator. Electron. J. Probab. 16, 1600–1620 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied mathematical sciences, vol. 44. Springer, New York (1983)zbMATHGoogle Scholar
  17. 17.
    Podlubny, I.: Fractional Differential Equations. Mathematics in science and engineering, vol. 198. Academic Press Inc., San Diego (1999)zbMATHGoogle Scholar
  18. 18.
    Prüss, J.: Evolutionary Integral Equations and Applications. Birkhäuser, Basel (1993)CrossRefzbMATHGoogle Scholar
  19. 19.
    Repin, O.N., Saichev, A.I.: Fractional Poisson law. Radiophys. Quantum Electron. 43, 738–741 (2000)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Samko, S.-G., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives. Gordon and Breach Science Publishers, Yverdon (1993)zbMATHGoogle Scholar
  21. 21.
    Uchaikin, V.V., Cahoy, D.O., Sibatov, R.T.: Fractional processes: from Poisson to branching one. Int. J. Bifur. Chaos Appl. Sci. Eng. 18, 2717–2725 (2008)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Matemática y Ciencia de la Computación, Facultad de CienciasUniversidad de Santiago de ChileSantiagoChile
  2. 2.Facultad de Ingeniería Universidad de ValparaisoCIMFAVValparaisoChile

Personalised recommendations