Growth and Distortion Results for a Class of Biholomorphic Mapping and Extremal Problem with Parametric Representation in \(\mathbb {C}^n\)

  • Zhenhan Tu
  • Liangpeng XiongEmail author


Let \(\widehat{\mathcal {S}}_g^{\alpha , \beta }(\mathbb {B}^n)\) be a subclass of normalized biholomorphic mappings defined on the unit ball in \(\mathbb {C}^n,\) which is closely related to the starlike mappings. Firstly, we obtain the growth theorem for \(\widehat{\mathcal {S}}_g^{\alpha , \beta }(\mathbb {B}^n)\). Secondly, we apply the growth theorem and a new type of the boundary Schwarz lemma to establish the distortion theorems of the Fréchet-derivative type and the Jacobi-determinant type for this subclass, and the distortion theorems with g-starlike mapping (resp. starlike mapping) are partly established also. At last, we study the Kirwan and Pell type results for the compact set of mappings which have g-parametric representation associated with a modified Roper–Suffridge extension operator, which extend some earlier related results.


Distortion estimates Extreme points Growth theorems Starlike mappings Support points 

Mathematics Subject Classification

32H02 30C45 



The project is supported by the National Natural Science Foundation of China (No. 11671306).


  1. 1.
    Barnard, R., FitzGerald, C., Gong, S.: A distortion theorem for biholomorphic mappings in \(\mathbb{C}^2\). Trans. Am. Math. Soc. 344, 907–924 (1994)zbMATHGoogle Scholar
  2. 2.
    Bracci, F.: Shearing process and an example of a bounded support function in \(S^0(\mathbb{B}^2)\). Comput. Methods Funct. Theory 15, 151–157 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cartan, H.: Sur la possibilité détendre aux fonctions de plusieurs variables complexes la théorie des fonctions univalentes. In: Montel, P. (ed.) Lecons sur les Fonctions Univalentes ou Multivalentes. Gauthier-Villars, Paris (1933)Google Scholar
  4. 4.
    Chirilă, T.: An extension operator associated with certain g-loewner chains. Taiwan. J. Math. 17(5), 1819–1837 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chirilă, T.: Extreme points, support points and \(g\)-loewner chains associated with Roper–Suffridge and Pfaltzgraff–Suffridge extension operators. Complex Anal. Oper. Theory 9, 1781–1799 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chirilă, T., Hamada, H., Kohr, G.: Extreme points and support points for mappings with \(g\)-parametric representation in \(\mathbb{C}^n\). Mathematica (Cluj) 56(79), 21–40 (2014)zbMATHGoogle Scholar
  7. 7.
    Chu, C.H., Hamada, H., Honda, T., Kohr, G.: Distortion theorems for convex mappings on homogeneous balls. J. Math. Anal. Appl. 369(2), 437–442 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Duren, P.L.: Univalent functions, Grundlehren der mathematischen Wtssenschaften, vol. 259. Springer, New York, Berlin, Heidelberg, Tokyo (1983)Google Scholar
  9. 9.
    Graham, I., Hamada, H., Kohr, G.: Parametric representation of univalent mappings in several complex variables. Can. J. Math. 54, 324–351 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Graham, I., Hamada, H., Kohr, G., Kohr, M.: Extreme points, support points and the Loewner variation in several complex variables. Sci. China Math. 55, 1353–1366 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Graham, I., Hamada, H., Kohr, G., Kohr, M.: Extremal properties associated with univalent subordination chains in \(\mathbb{C}^n\). Math. Ann. 359, 61–99 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Graham, I., Hamada, H., Kohr, G., Kohr, M.: Bounded support points for mappings with \(g\)-parametric representation in \(\mathbb{C}^2\). J. Math. Anal. Appl. 454, 1085–1105 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Graham, I., Hamada, H., Kohr, G., Suffridge, T.J.: Extension operators for locally univalent mappings. Mich. Math. J. 50, 37–55 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Graham, I., Kohr, G., Pfaltzgraff, J.A.: Parametric representation and linear functionals associated with extension operators for biholomorphic mappings. Rev. Roum. Math. Pures Appl. 52, 47–68 (2007)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Gurganus, K.R.: \(\Phi \)-like holomorphic functions in \(\mathbb{C}^n\) and banach spaces. Proc. Am. Math. Soc. 205, 389–406 (1975)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Hamada, H., Honda, T., Kohr, G.: Growth theorems and coefficient bounds for univalent holomorphic mappings which have parametric representation. J. Math. Anal. Appl. 317, 302–319 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Hamada, H., Kohr, G.: Growth and distortion results for convex mappings in infinite dimensional spaces. Complex Var. 47(4), 291–301 (2002)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Kikuchi, K.: Starlike and convex mappings in several complex variables. Pac. J. Math. 44, 569–580 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Krantz, S.: The Schwarz lemma at the boundary. Complex Var. Elliptic Equ. 56(5), 455–468 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Liu, T.S., Wang, J.F., Tang, X.M.: Schwarz lemma at the boundary of the unit ball in \(\mathbb{C}^n\) and its applications. J. Geom. Anal. 25, 1890–1914 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Liu, X.S., Liu, T.S.: On the sharp distortion theorems for a subclass of starlike mappings in several complex variables. Taiwan. J. Math. 19(2), 363–379 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Liu, X.S., Liu, T.S.: Sharp distortion theorems for a subclass of biholomorphic mappings which have a parametric representation in several complex variables. Chin. Ann. Math. 37B(4), 553–570 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Pell, R.: Support point functions and the Loewner variation. Pac. J. Math. 86, 561–564 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Pfaltzgraff, J.A.: Subordination chains and univalence of holomorphic mappings in \(\mathbb{C}^n\). Math. Ann. 210, 55–68 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Roper, K., Suffridge, T.J.: Convex mappings on the unit ball of \(\mathbb{C}^n\). J. Anal. Math. 65, 333–347 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Schleissinger, S.: On support points of the class \(S^0(B^n)\). Proc. Am. Math. Soc. 142(11), 3881–3887 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Suffridge, T.J.: Starlikeness, Convexity and Other Geometric Properties of Holomorphic Maps in Higher Dimensions. Lecture Notes in Math, vol. 599, pp. 146–159. Springer, New York (1976)Google Scholar
  28. 28.
    Tu, Z.H., Zhang, S.: The Schwarz lemma at the boundary of the symmetrized bidisc. J. Math. Anal. Appl. 459, 182–202 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Xu, Q.H., Liu, T.S.: On the growth and covering theorem for normalized biholomorphic mappings. Chin. Ann. Math. 30(A), 213–220 (2009)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Zhang, X.F.: The growth theorems for subclasses of biholomorphic mappings in several complex variables. Cogent Math. 4, 1–11 (2017)MathSciNetGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsWuhan UniversityWuhanPeople’s Republic of China

Personalised recommendations