Complex Analysis and Operator Theory

, Volume 13, Issue 1, pp 127–139 | Cite as

\(L^2\)-Müntz Spaces as Model Spaces

  • Emmanuel FricainEmail author
  • Pascal Lefèvre


We emphasize a bridge between two areas of function theory: hilbertian Müntz spaces and model spaces of the Hardy space of the right half plane. We give miscellaneous applications of this viewpoint to hilbertian Müntz spaces.


Model spaces Müntz spaces Mellin transform 

Mathematics Subject Classification

Primary 46E22 30H10 30B10 



We would like to thank the anonymous referee for his/her suggestions to improve the presentation and organization of the paper.


  1. 1.
    AlAlam, I., Habib, G., Lefèvre, P., Maalouf, F.: Essential norms of Volterra and Cesàro operators on Müntz spaces. To appear in Colloq. MathGoogle Scholar
  2. 2.
    Almira, J.M.: Müntz type theorems I. Surv. Approx. Theory 3, 152–194 (2007)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Baranov, A.: Completeness and Riesz Bases of Reproducing Kernels in Model Subspaces, pp. 1–34. IMRN(2006)Google Scholar
  4. 4.
    Borwein, P., Erdélyi, T.: The full Müntz theorem in \(C[0,1]\) and \(L^1[0,1]\). J. Lond. Math. Soc. (2) 54(1), 102–110 (1996)CrossRefzbMATHGoogle Scholar
  5. 5.
    Borwein, P., Erdélyi, T., Zhang, J.: Müntz systems and orthogonal Müntz Legendre polynomials. Trans. A.M.S. 342(2), 523–542 (1994)zbMATHGoogle Scholar
  6. 6.
    Chalendar, I., Fricain, E., Timotin, D.: Embeddings theorems for Müntz spaces. Ann. l’Inst. Fourier 61, 2291–2311 (2011)CrossRefzbMATHGoogle Scholar
  7. 7.
    Feinerman, R.P., Newman, D.J.: Polynomial Approximation. Williams and Wilkins, Baltimore (1974)zbMATHGoogle Scholar
  8. 8.
    Fricain, E., Mashreghi, J.: The Theory of \({\cal{H}}(b)\) Spaces, vol. 1. New Mathematical Monographs: 20. Cambridge University Press (2016)Google Scholar
  9. 9.
    Gaillard, L., Lefèvre, P.: Lacunary Müntz spaces: isomorphisms and Carleson embeddings, submittedGoogle Scholar
  10. 10.
    Gurariy, V., Macaev, V.: Lacunary power sequences in spaces \(C\) and \(L^p\), (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 30, 3–14 (1966)Google Scholar
  11. 11.
    Garcia S., Mashreghi J., Ross W.: Introduction to model spaces and their operators. Cambridge Studies in Advanced Mathematics, vol. 148. Cambridge University Press (2016)Google Scholar
  12. 12.
    Gurariy, V., Lusky, W.: Geometry of Müntz spaces and related questions. In: Lecture Notes in Mathematics, Springer, Berlin, Heidelberg, New York (2005)Google Scholar
  13. 13.
    Hruschev, S., Nikolski, N., Pavlov, B.: Unconditional bases of exponentials and of reproducing kernels, Complex analysis and spectral theory. In: Lecture Notes in Mathematics 864, pp. 214–335. Berlin-Heidelberg-New York. Springer (1981)Google Scholar
  14. 14.
    Kahane, J.P.: Some random series of functions. Cambridge University Press, Cambridge (1985)zbMATHGoogle Scholar
  15. 15.
    Müntz, C.: Über den Approximationssatz von Weierstrass, pp. 303–312. H. A. Schwarz’s Festschrift, Berlin (1914)Google Scholar
  16. 16.
    Nikolski, N.: Treatise on the Shift operator, Grundlehren der Mathematischen Wissenschaften, vol. 273. Springer, Berlin (1986)CrossRefGoogle Scholar
  17. 17.
    Nikolski N.: Operators, functions, and systems: an easy reading, vol. 2. Model operators and systems. Mathematical Surveys and Monographs, vol. 93. American Mathematical Society, USA (2002)Google Scholar
  18. 18.
    Noor, S.W., Timotin, D.: Embeddings of Müntz spaces: the Hilbertian case. Proc. Am. Math. Soc. 141, 2009–2023 (2013)CrossRefzbMATHGoogle Scholar
  19. 19.
    Gorkin, P., McCarthy, J., Pott, S., Witt, B.: Thin sequences and the Gram–Schmidt matrix. Arch. Math. 103, 93–99 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Rudin W.: Real and complex analysis, Third edition. McGraw-Hill Book Co., New York (1987)Google Scholar
  21. 21.
    Szász, O.: Über die approximation stetiger Funktionen durch lineare aggregate von Potenzen. Math. Ann. 77, 482–496 (1916)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Volberg, S.: Two remarks concerning the theorem of S. Axler, S-Y.A Chang and D. Sarason, J.O.T. 7 no. 2, pp. 209–218 (1982)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Laboratoire Paul PainlevéUniversité Lille 1Villeneuve d’AscqFrance
  2. 2.Laboratoire de Mathématiques de LensUniversité-d’ArtoisLensFrance

Personalised recommendations