\(L^2\)-Müntz Spaces as Model Spaces
Article
First Online:
- 41 Downloads
Abstract
We emphasize a bridge between two areas of function theory: hilbertian Müntz spaces and model spaces of the Hardy space of the right half plane. We give miscellaneous applications of this viewpoint to hilbertian Müntz spaces.
Keywords
Model spaces Müntz spaces Mellin transformMathematics Subject Classification
Primary 46E22 30H10 30B10Notes
Acknowledgements
We would like to thank the anonymous referee for his/her suggestions to improve the presentation and organization of the paper.
References
- 1.AlAlam, I., Habib, G., Lefèvre, P., Maalouf, F.: Essential norms of Volterra and Cesàro operators on Müntz spaces. To appear in Colloq. MathGoogle Scholar
- 2.Almira, J.M.: Müntz type theorems I. Surv. Approx. Theory 3, 152–194 (2007)MathSciNetzbMATHGoogle Scholar
- 3.Baranov, A.: Completeness and Riesz Bases of Reproducing Kernels in Model Subspaces, pp. 1–34. IMRN(2006)Google Scholar
- 4.Borwein, P., Erdélyi, T.: The full Müntz theorem in \(C[0,1]\) and \(L^1[0,1]\). J. Lond. Math. Soc. (2) 54(1), 102–110 (1996)CrossRefzbMATHGoogle Scholar
- 5.Borwein, P., Erdélyi, T., Zhang, J.: Müntz systems and orthogonal Müntz Legendre polynomials. Trans. A.M.S. 342(2), 523–542 (1994)zbMATHGoogle Scholar
- 6.Chalendar, I., Fricain, E., Timotin, D.: Embeddings theorems for Müntz spaces. Ann. l’Inst. Fourier 61, 2291–2311 (2011)CrossRefzbMATHGoogle Scholar
- 7.Feinerman, R.P., Newman, D.J.: Polynomial Approximation. Williams and Wilkins, Baltimore (1974)zbMATHGoogle Scholar
- 8.Fricain, E., Mashreghi, J.: The Theory of \({\cal{H}}(b)\) Spaces, vol. 1. New Mathematical Monographs: 20. Cambridge University Press (2016)Google Scholar
- 9.Gaillard, L., Lefèvre, P.: Lacunary Müntz spaces: isomorphisms and Carleson embeddings, submittedGoogle Scholar
- 10.Gurariy, V., Macaev, V.: Lacunary power sequences in spaces \(C\) and \(L^p\), (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 30, 3–14 (1966)Google Scholar
- 11.Garcia S., Mashreghi J., Ross W.: Introduction to model spaces and their operators. Cambridge Studies in Advanced Mathematics, vol. 148. Cambridge University Press (2016)Google Scholar
- 12.Gurariy, V., Lusky, W.: Geometry of Müntz spaces and related questions. In: Lecture Notes in Mathematics, Springer, Berlin, Heidelberg, New York (2005)Google Scholar
- 13.Hruschev, S., Nikolski, N., Pavlov, B.: Unconditional bases of exponentials and of reproducing kernels, Complex analysis and spectral theory. In: Lecture Notes in Mathematics 864, pp. 214–335. Berlin-Heidelberg-New York. Springer (1981)Google Scholar
- 14.Kahane, J.P.: Some random series of functions. Cambridge University Press, Cambridge (1985)zbMATHGoogle Scholar
- 15.Müntz, C.: Über den Approximationssatz von Weierstrass, pp. 303–312. H. A. Schwarz’s Festschrift, Berlin (1914)Google Scholar
- 16.Nikolski, N.: Treatise on the Shift operator, Grundlehren der Mathematischen Wissenschaften, vol. 273. Springer, Berlin (1986)CrossRefGoogle Scholar
- 17.Nikolski N.: Operators, functions, and systems: an easy reading, vol. 2. Model operators and systems. Mathematical Surveys and Monographs, vol. 93. American Mathematical Society, USA (2002)Google Scholar
- 18.Noor, S.W., Timotin, D.: Embeddings of Müntz spaces: the Hilbertian case. Proc. Am. Math. Soc. 141, 2009–2023 (2013)CrossRefzbMATHGoogle Scholar
- 19.Gorkin, P., McCarthy, J., Pott, S., Witt, B.: Thin sequences and the Gram–Schmidt matrix. Arch. Math. 103, 93–99 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
- 20.Rudin W.: Real and complex analysis, Third edition. McGraw-Hill Book Co., New York (1987)Google Scholar
- 21.Szász, O.: Über die approximation stetiger Funktionen durch lineare aggregate von Potenzen. Math. Ann. 77, 482–496 (1916)MathSciNetCrossRefzbMATHGoogle Scholar
- 22.Volberg, S.: Two remarks concerning the theorem of S. Axler, S-Y.A Chang and D. Sarason, J.O.T. 7 no. 2, pp. 209–218 (1982)Google Scholar
Copyright information
© Springer International Publishing AG 2017