Complex Analysis and Operator Theory

, Volume 13, Issue 1, pp 115–126 | Cite as

Existence of Positive Solution for Kirchhoff Problems

  • K. Ben Ali
  • M. Bezzarga
  • A. GhanmiEmail author
  • K. Kefi


In this work, we study the following Kirchhoff type problem
$$\begin{aligned} \begin{gathered} -\Big (a+b\int _{\Omega }|\nabla u|^pdx\Big )\Delta _p u =g(x)u^{-\gamma }+\lambda f(x,u),\quad \text {in }\Omega , \\ u=0, \quad \text {on }\partial \Omega , \end{gathered} \end{aligned}$$
where \(p\ge 2\), \(\Omega \) is a regular bounded domain in \(\mathbb {R}^N\), \((N\ge 3)\). Firstly, for \(p>2\), we prove under some appropriate conditions on the singularity and the nonlinearity the existence of nontrivial weak solution to this problem. For \(p=2\), we show, under supplementary condition, the positivity of this solution. Moreover, in the case \(\lambda =0\) we prove an uniqueness result. We use the variational method to prove our main results.


Kirchhoff type equation Singularity problem Variational methods Resonance Positive solution Mountain pass lemma 

Mathematics Subject Classification

35B09 35B33 35J20 


  1. 1.
    Alves, C.O., Corrêa, F.J.S.A., Figueiredo, G.M.: On a class of nonlocal elliptic problems with critical growth. Differ. Equ. Appl. 2, 409–417 (2010)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Anello, G.: A uniqueness result for a nonlocal equation of Kirchhoff type and some related open problems. J. Math. Anal. Appl. 373, 248–251 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chen, C.Y., Kuo, Y.C., Wu, T.F.: he Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions. J. Differ. Equ. 250, 1876–1908 (2011)CrossRefzbMATHGoogle Scholar
  4. 4.
    Coclite, M.M., Palmieri, G.: On a singular nonlinear Dirichlet problem. Commun. Partial Differ. Equ. 14, 1315–1327 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Crandall, M.G., Rabinowitz, P.H., Tartar, L.: On a Dirichlet problem with a singular nonlinearity. Commun. Partial Differ. Equ. 2, 193–222 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    David, A., Boccardo, L.: Multiplicity of solutions for a Dirichlet problem with a singular and a supercritical nonlinearities. Differ. Integral Equ. 26, 119–128 (2013)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Ghanmi, A., Saoudi, K.: A multiplicity results for a singular problem involving the fractional \(p\)-Laplacian operator. Complex Var. Elliptic Equ. 61(5), 695–725 (2017)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Ghanmi, A., Saoudi, K.: The Nehari manifold for a singular elliptic equation involving the fractional Laplace operator. Fract. Differ. Calculus 6(2), 201–217 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Gui, C.F., Lin, F.H.: Regularity of an elliptic problem with a singular nonlinearity. Proc. R. Soc. Edinb. A 123, 1021–1029 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kirchhoff, G.: Mechanik. Teubner, Leipzig (1883)zbMATHGoogle Scholar
  11. 11.
    He, X.M., Zou, W.M.: Infnitely many solutions for Kirchhoff-type problems. Nonlinear Anal. 70, 1407–1414 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Lei, C.Y., Liao, J.F., Tang, C.L.: Multiple positive solutions for Kirchhoff type of problems with singularity and critical exponents. J. Math. Anal. Appl. 421, 521–538 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Li, Y.H., Li, F.Y., Shi, J.P.: A uniqueness result for Kirchhoff type problems with singularity. Appl. Math. Lett. 59, 24–30 (2016)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Liao, J.F., Ke, X.F., Yu, C., Lei, C.Y., Tang, C.T.: Existence of a positive solution to Kirchhoff type problems without compactness conditions. J. Differ. Equ. 253, 22852294 (2012)MathSciNetGoogle Scholar
  15. 15.
    Liu, X., Sun, Y.J.: Multiple positive solutions for Kirchhoff type problems with singularity. Commun. Pure Appl. Anal. 12, 721–733 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Mao, A.M., Luan, S.X.: Sign-changing solutions of a class of nonlocal quasilinear elliptic boundary value problems. J. Math. Anal. Appl. 383, 239–243 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Perera, K., Zhang, Z.T.: Nontrivial solutions of Kirchhoff-type problems via the Yang index. J. Differ. Equ. 221, 246–255 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Sun, J.J., Tang, C.L.: Existence and multipicity of solutions for Kirchhoff type equations. Nonlinear Anal. 74, 1212–1222 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Wang, J., Tian, L.X., Xu, J.X., Zhang, F.B.: Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth. J. Differ. Equ. 253, 2314–2351 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Xie, Q.L., Wu, X.P., Tang, C.L.: Existence and multiplicity of solutions for Kirchhoff type problem with critical exponent. Commun. Pure Appl. Anal. 12, 2773–2786 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Zhang, Z.T., Perera, K.: Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow. J. Math. Anal. Appl. 317, 456–463 (2006)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • K. Ben Ali
    • 1
    • 3
  • M. Bezzarga
    • 4
  • A. Ghanmi
    • 2
    • 3
    Email author
  • K. Kefi
    • 3
    • 5
  1. 1.Jazan Technical CollegeJazanSaudi Arabia
  2. 2.Mathematics Department, Faculty of Sciences and Arts KhulaisUniversity of Jeddah, KSAJeddahSaudi Arabia
  3. 3.Mathematics DepartmentFaculty of Sciences Tunis El ManarTunisTunisia
  4. 4.Mathematics DepartmentIPEITTunisTunisia
  5. 5.Community College of RafhaNorthern border university, KSAArarSaudi Arabia

Personalised recommendations