Deficiency Indices of Some Classes of Unbounded \(\mathbb H\)-Operators
Article
First Online:
- 46 Downloads
- 1 Citations
Abstract
In this paper we define the deficiency indices of a closed symmetric right \(\mathbb H\)-linear operator and formulate a general theory of deficiency indices in a right quaternionic Hilbert space. This study provides a necessary and sufficient condition in terms of deficiency indices and in terms of S-spectrum, parallel to their complex counterparts, for a symmetric right \(\mathbb H\)-linear operators to be self-adjoint.
Keywords
Quaternions Quaternionic Hilbert spaces Symmetric operator Deficiency index S-spectrumMathematics Subject Classification
Primary 47B32 47S10References
- 1.Adler, S.L.: Quaternionic Quantum Mechanics and Quantum Fields. Oxford University Press, New York (1995)zbMATHGoogle Scholar
- 2.Ali, S.T., Antoine, J.-P., Gazeau, J.-P.: Coherent States, Wavelets and Their Generalizations. Springer, New York (2000)CrossRefzbMATHGoogle Scholar
- 3.Alpay, D., Colombo, F., Kimsey D.P.: The spectral theorem for quaternionic unbounded normal operators based on the S-spectrum. J. Math. Phys. 57, 023503 (2016)Google Scholar
- 4.Colombo, F., Sabadini, I.: On some properties of the quaternionic functional calculus. J. Geom. Anal. 19, 601–627 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
- 5.Colombo, F., Sabadini, I.: On the formulations of the quaternionic functional calculus. J. Geom. Phys. 60, 1490–1508 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
- 6.Gazeau, J.-P.: Coherent States in Quantum Physics. Wiley, Berlin (2009)CrossRefGoogle Scholar
- 7.Ghiloni, R., Moretti, W., Perotti, A.: Continuous slice functional calculus in quaternionic Hilbert spaces. Rev. Math. Phys. 25, 1350006 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
- 8.Schmdgen, K.: Unbounded Self-Adjoint Operators on Hilbert Space. Springer, Netherlands (2012)CrossRefGoogle Scholar
- 9.Vasilescu, F.-H.: Quaternionic Cayley transform revisited. J. Math. Anal. Appl. 409, 790–807 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
- 10.Viswanath, K.: Normal operators on quaternionic Hilbert spaces. Trans. Am. Math. Soc. 162, 337–350 (1971)zbMATHGoogle Scholar
- 11.Zhang, F.: Quaternions and matrices of quaternions. Linear Algebra Appl. 251, 21–57 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
Copyright information
© Springer International Publishing AG 2017