Complex Analysis and Operator Theory

, Volume 12, Issue 7, pp 1567–1608 | Cite as

Correction: An Application of Free Probability to Arithmetic Functions

  • Ilwoo ChoEmail author
  • Palle E. T. Jorgensen


In this paper, we study free probability on tensor product algebra \(\mathfrak {M} = M\,\otimes _{\mathbb {C}}\,{\mathcal {A}}\) of a \(W^{*}\)-algebra M and the algebra \({\mathcal {A}}\), consisting of all arithmetic functions equipped with the functional addition and the convolution. We study free-distributional data of certain elements of \(\mathfrak {M}\), and study freeness on \(\mathfrak {M}\), affected by fixed primes.


Free probability Free moments Free cumulants Arithmetic functions The arithmetic algebra \({\mathcal {A}}\) Tensor product 

Mathematics Subject Classification

05E15 11G15 11R04 11R09 11R47 11R56 46L10 46L40 46L53 46L54 47L15 47L30 47L55 



The authors sincerely apologize to the readers, and they hope this corrected version will be a chance to help fixing their mistakes with apology. The authors found mistakes in Sects. 4 and 5 in the original published paper thanks to Prof. Brent Nelson, who indicated the mistakes which the corresponding author made. The authors specially thank Prof. Nelson for his kind indication and opinions. Also, the authors apologize to the editors of the journal, Compl. Anal. Oper. Theo.


  1. 1.
    Bump, D.: Automorphic Forms and Representations, Cambridge Studies in Adv. Math., 55, Cambridge Univ. Press. ISBN: 0-521-65818-7 (1996)Google Scholar
  2. 2.
    Cho, I.: Operators induced by prime numbers. Methods Appl. Math. 19(4), 313–340 (2013)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Cho, I.: On dynamical systems induced by \(p\)-Adic number fields. Opuscula Math. 35(4), 445–484 (2015)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cho, I.: Classification on arithmetic functions and corresponding free-moment \(L\)-functions. Bull. Korean Math. Soc. 52(3), 717–734 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Cho, I.: Free distributional data of arithmetic functions and corresponding generating functions. Compl. Anal. Oper. Theo. (2013). doi: 10.1007/s11785-013-0331-9
  6. 6.
    Cho, I., Gillespie, T.: Arithmetic functions and corresponding free probability determined by primes (2013) (submitted to Rocky Mt. J. Math) Google Scholar
  7. 7.
    Cho, I., Jorgensen, P.E.T.: Krein-space operators induced by dirichlet characters, special issues: Contemp. Math. Amer. Math. Soc.: Commutative and Noncommutative Harmonic Analysis and Applications, pp. 3–33 (2014)Google Scholar
  8. 8.
    Cho, I., Jorgensen, P.E.T.: Krein-space representations of arithmetic functions determined by primes. Alg. Rep. Theo. 17(6), 1809–1841 (2014)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Gillespie, T.: Superposition of zeroes of automorphic \(L\)-functions and functoriality, Univ. of Iowa. PhD Thesis (2010)Google Scholar
  10. 10.
    Gillespie, T.: Prime number theorems for rankin-Selberg \(L\)-functions over number fields. Sci. China Math. 54(1), 35–46 (2011)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Radulescu, F.: Random matrices, amalgamated free products and subfactors of the \(C^{*}\)-algebra of a free group of nonsingular index. Invent. Math. 115, 347–389 (1994)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Speicher, R.: Combinatorial theory of the free product with amalgamation and operator-valued free probability theory. Am. Math. Soc. Mem. 132(627) (1998)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Voiculescu, D., Dykemma, K., Nica, A.: Free random variables. CRM Monograph Series, vol. 1. ISBN:978-08-21869703, American Mathematical Society (1992)Google Scholar
  14. 14.
    Vladimirov, V.S., Volovich, I.V., Zelenov, E.I.: \(p\)-Adic Analysis and Mathematical Physics. Ser. Soviet & East European Math., vol 1. ISBN:978-981-02-0880-6, World Scientific (1994)Google Scholar
  15. 15.
    Bach, E., Shallit, J.: Algorithmic Number Theory (Vol I), MIT Press Ser. Foundation. Comput. ISBN:0-262-02405-5, Published by MIT Press (1996)Google Scholar
  16. 16.
    Ford, K.: The number of solutions of \(\phi (x)=m\). Ann. Math. 150(1), 283–311 (1999)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Hardy, G.H., Wright, E.M.: An introduction to the theory of numbers (5-th Ed.). ISBN:978-0-19-853171-5, Published by Oxford Univ. Press (1980)Google Scholar
  18. 18.
    Pettofrezzo, A.J., Byrkit, D.R.: Elements of Number Theory, LCCN: 77-81766, Published by Prentice Hall (1970)Google Scholar
  19. 19.
    Lagarias, J.C.: Euler Constant: Euler’s Work and Modern Development, Bull (New Series). Am. Math. Soc. 50(4), 527–628 (2013)CrossRefGoogle Scholar
  20. 20.
    Blackadar, B.: Operator Algebras: Theory of \(C^{*}\)-Algebras and von Neumann Algebras. ISBN:978-3-540-28517-5, Published by Springer-Verlag (1965)Google Scholar
  21. 21.
    Wigner, E.P.: On the distribution of the roots of certain symmetric matrices. Ann. Math. (2) 67, 325–327 (1958)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Voiculescu, D.: On a trace formula of M. G. Kreuin, operators in indefinite metric spaces, scattering theory and other topics (Bucharest, 1985). Oper. Theo, Adv. Appl., 24, 329–332 (1987)Google Scholar
  23. 23.
    Voiculescu, D.: Symmetries of some reduced free product \(C^{*}\)-Algebras, operator algebras and their connections with topology and ergodic theory (Buchsteni, 1983). Lect. Notes Math. 1132, 556–588 (1985)Google Scholar
  24. 24.
    Alpay, D., Jorgensen, P.E.T., Salomon, G.: On Free Stochastic Processes and Their Derivatives. (2013) (submitted). arXiv: 1311.3239
  25. 25.
    Popescu, I.: Local functional inequalities in one-dimensional free probability. J. Funct. Anal. 264(6), 1456–1479 (2013)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Valentin, I.: A note on amalgamated boolean, orthogonal and conditionally monotone or anti-monotone products of operator-valued \(C^{*}\)-algebraic probability spaces. Rev. Roumaine Math. Pures Appl. 57(4), 341–370 (2012)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Williams, J.D.: A Khintchine decomposition for free probability. Ann. Probab. 40(5), 2236–2263 (2012)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Blitvic, N.: The \((q, t)\)-Gaussian process. J. Funct. Anal. 263(10), 3270–3305 (2012)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsSt. Ambrose UniversityDavenportUSA
  2. 2.Department of Mathematics and StatisticsUniversity of IowaIowa CityUSA

Personalised recommendations