Advertisement

Complex Analysis and Operator Theory

, Volume 10, Issue 6, pp 1267–1275 | Cite as

Some Characterizations of Integral Operators Associated with Certain Classes of p-Valent Functions Defined by the Srivastava–Saigo–Owa Fractional Differintegral Operator

  • M. K. Aouf
  • A. O. Mostafa
  • H. M. Zayed
Article

Abstract

The purpose of this paper is to introduce new integral operators associated with Srivastava–Saigo–Owa fractional differintegral operator. We investigate some properties for the integral operators \({\mathcal {F}}_{p,\eta ,\mu }^{\lambda ,\delta }(z)\) and \({\mathcal {G}}_{p,\eta ,\mu }^{\lambda ,\delta }(z)\) to be in the classes \({\mathcal {R}}_{k}^{\zeta }\left( p,\rho \right) \) and \({\mathcal {V}}_{k}^{\zeta }\left( p,\rho \right) \).

Keywords

\(\ p\)-Valent functions Hadamard product or convolution Srivastava–Saigo–Owa fractional differintegral operator 

Mathematics Subject Classification

30C45 30C50 

Notes

Acknowledgments

The authors thank the referees for their valuable suggestions which led to the improvement of this paper.

References

  1. 1.
    Aouf, M.K.: A generalization of functions with real part bounded in the mean on the unit disc. Math. Japon. 33(2), 175–182 (1988)MathSciNetMATHGoogle Scholar
  2. 2.
    Arif, M., Ul-Haq, W., Ismail, M.: Mapping properties of generalized Robertson functions under certain integral operators. Appl. Math. 3, 52–55 (2012)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Breaz, D., Breaz, N.: Two integral operators. Stud. Univ. Babes-Bolyai Math. 47(3), 13–19 (2002)MathSciNetMATHGoogle Scholar
  4. 4.
    Breaz, D., Owa, S., Breaz, N.: A new integral univalent operator. Acta Univ. Apulensis 16, 11–16 (2008)MathSciNetMATHGoogle Scholar
  5. 5.
    Breaz, D., Breaz, N., Srivastava, H.M.: An extension of the univalent condition for a family of integral operators. Appl. Math. Lett. 22, 41–44 (2009)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Frasin, B.A.: New general integral operators of \(p-\)valent functions. J. Inequal. Pure Appl. Math. 10(4) (109), 1–9 (2009)Google Scholar
  7. 7.
    Goyal, G.P., Prajapat, J.K.: A new class of analytic \(p\)-valent functions with negative coefficients and fractional calculus operators. Tamsui Oxford Univ. J. Math. Sci. 20(2), 175–186 (2004)MathSciNetMATHGoogle Scholar
  8. 8.
    Kim, Y.J., Merkes, E.P.: On an integral of powers of a spirallike function. Kyungpook. Math. J. 12(2), 249–252 (1972)MathSciNetMATHGoogle Scholar
  9. 9.
    Miller, S.S., Mocanu, P.T., Reade, M.O.: Starlike integral operators. Pacific J. Math. 79(1), 157–168 (1978)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Owa, S.: On the distortion theorems. I. Kyungpook Math. J. 18, 53–59 (1978)MathSciNetMATHGoogle Scholar
  11. 11.
    Owa, S., Srivastava, H.M.: Univalent and starlike generalized hypergeometric functions. Can. J. Math. 39, 1057–1077 (1987)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Padmanabhan, K.S., Parvatham, R.: Properties of a class of functions with bounded boundary rotation. Ann. Polon. Math. 31, 311–323 (1975)MathSciNetMATHGoogle Scholar
  13. 13.
    Pascu, N.N., Pescar, V.: On the integral operators of Kim Merkes and Pfaltzgraff. Mathematica 32(2), 185–192 (1990)MathSciNetMATHGoogle Scholar
  14. 14.
    Pinchuk, B.: Functions with bounded boundary rotation. Israel J. Math. 10, 7–16 (1971)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Prajapat, J.K., Aouf, M.K.: Majorization problem for certain class of \(p\)-valently analytic function defined by generalized fractional differintegral operator. Comput. Math. Appl. 63(1), 42–47 (2012)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Prajapat, J.K., Raina, P.K., Srivastava, H.M.: Some inclusion properties for certain subclasses of strongly starlike and strongly convex functions involving a family of fractional integral operators. Integral Transform. Spec. Funct. 18(9), 639–651 (2007)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Seoudy, T.M., Aouf, M.K.: Subclasses of \(p\)-valent functions of bounded boundary rotation involving the generalized fractional differintegral operator. C. R. A. Cad. Sci. Paris, Ser. I 351, 787–792 (2013)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Srivastava, H.M., Saigo, M., Owa, S.: A class of distortion theorems involving certain operators of fractional calculus. J. Math. Anal. Appl. 131, 412–420 (1988)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Srivastava, H.M., Owa, S.: Some characterizations and distortions theorems involving fractional calculus, generalized hypergeometric functions, Hadamard products, linear operators and certain subclasses of analytic functions. Nagoya Math. J. 106, 1–28 (1987)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Srivastava, H.M., Prajapat, J.K., Oros, G.I., Şendruţ iu, R.: Geometric properties of a certain general family of integral operators. Filomat 28(4), 745–754 (2014)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Stanciu, L.F., Breaz, D., Srivastava, H.M.: Some criteria for univalence of a certain integral operator. Novi Sad J. Math. 43(2), 51–57 (2013)MathSciNetMATHGoogle Scholar
  22. 22.
    Tang, H., Deng, G.-T., Li, S.-H., Aouf, M.K.: Inclusion results for certain subclasses of spiral-like multivalent functions involving a generalized fractional differintegral operator. Integral Transform. Spec. Funct. 24(11), 873–883 (2013)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceMansoura UniversityMansouraEgypt
  2. 2.Department of Mathematics, Faculty of ScienceMenofia UniversityShebin ElkomEgypt

Personalised recommendations