Complex Analysis and Operator Theory

, Volume 8, Issue 2, pp 513–528 | Cite as

Symplectic Twistor Operator on \(\mathbb R ^{2n}\) and the Segal–Shale–Weil Representation



The aim of our article is the study of solution space of the symplectic twistor operator \(T_s\) in symplectic spin geometry on standard symplectic space \((\mathbb R ^{2n},\omega )\), which is the symplectic analogue of the twistor operator in (pseudo) Riemannian spin geometry. In particular, we observe a substantial difference between the case \(n=1\) of real dimension \(2\) and the case of \(\mathbb R ^{2n}, n>1\). For \(n>1\), the solution space of \(T_s\) is isomorphic to the Segal–Shale–Weil representation.


Symplectic twistor operator Symplectic Dirac operator  Metaplectic Howe duality 

Mathematics Subject Classification

53C27 53D05 81R25 


  1. 1.
    Baum, H., Friedrich, T., Kath, F., Gruenewald, I.: Twistors and Killing Spinors on Riemannian Manifolds. B.G. Teubner, Stuttgart (1991). ISBN 3-8154-2014-8Google Scholar
  2. 2.
    De Bie, H., Somberg, P., Soucek, V.: The Howe Duality and Polynomial Solutions for the Symplectic Dirac Operator.
  3. 3.
    Britten, D.J., Lemire, F.W.: On modules of bounded multiplicities for the symplectic algebras. Trans. Am. Math. Soc. 351, 3413–3431 (1999)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Crumeyrolle, A.: Orthogonal and Symplectic Clifford Algebras: Spinor Structures. Springer, Netherlands (2009). ISBN-13: 978–9048140596Google Scholar
  5. 5.
    Dostalova, M., Somberg, P.: Symplectic twistor operator and its solution space on \(\mathbb{R}^2\). (2013)
  6. 6.
    Friedrich, T.: Dirac Operators in Riemannian Geometry. AMS, Providence (2000). ISBN-13:978–0821820551Google Scholar
  7. 7.
    Fulton, W., Harris, J.: Representation theory: a first Ccurse. In: Graduate Texts in Mathematics/Readings in Mathematics. Springer, Berlin (1991). ISBN-13: 978–0387974958Google Scholar
  8. 8.
    Habermann, K., Habermann, L.: Introduction to symplectic Dirac operators. In: Lecture Notes in Mathematics, vol. 1887. Springer, Berlin (2006)Google Scholar
  9. 9.
    Kadlcakova, L.: Contact symplectic geometry in parabolic invariant theory and symplectic Dirac operator. Dissertation Thesis. Mathematical Institute of Charles University, Prague (2002)Google Scholar
  10. 10.
    Kostant, B.: Symplectic Spinors. Rome Symposia XIV, 139–152 (1974)Google Scholar
  11. 11.
    Krysl, S.: Symplectic spinor valued forms and operators acting between them. Archivum Mathematicum 42(5), 279–290 (2006)MATHMathSciNetGoogle Scholar
  12. 12.
    Krysl, S.: Classification of \(1\)st order symplectic spinor operators in contact projective geometries. Differ. Geom. Appl. 26, 3 (2008)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.Mathematical Institute of Charles UniversityPraha 8Czech Republic

Personalised recommendations