Advertisement

Complex Analysis and Operator Theory

, Volume 6, Issue 2, pp 373–396 | Cite as

Hardy–Littlewood Inequalities for Fractional Derivatives of Invariant Harmonic Functions

  • Guangbin Ren
  • Uwe KählerEmail author
  • Jihuai Shi
  • Congwen Liu
Article

Abstract

We establish Hardy–Littlewood inequalities for fractional derivatives of Möbius invariant harmonic functions over the unit ball of \({\mathbb R^n}\) in mixed-norm spaces. In doing so we introduce a new criteria for the boundedness of operators in mixed-norm L p -spaces in terms of hyperbolic geometry of the real unit ball.

Keywords

Hardy–Littlewood inequalities Invariant harmonic functions Mixed-norm spaces Normal functions 

Mathematics Subject Classification (2000)

Primary 46E35 Secondary 47B38 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahern P., Bruna J., Cascante C.: H p-theory for generalized \({\mathcal M}\)-harmonic functions in the unit ball. Indiana Univ. Math. J. 45, 103–145 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Ahlfors, L.: Möbius transformations in several dimensions. In: Ordway Professorship Lectures in Mathematics. University of Minnesota, School of Mathematics, Minneapolis (1981)Google Scholar
  3. 3.
    Axler, S., Bourdon, P., Ramey, W.: Harmonic function theory. In: Graduate Texts in Mathematics, vol. 137. Springer-Verlag, New York (1992)Google Scholar
  4. 4.
    Benedek A., Panzone R.: The space L p, with mixed norm. Duke Math. J. 28, 301–324 (1961)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Bonami A., Bruna J., Grellier S.: On Hardy, BMO and Lipschitz spaces of invariant harmonic functions in the unit ball. Proc. Lond. Math. Soc. 77, 665–696 (1998)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Grellier S., Jaming P.: Harmonic functions on the real hyperbolic ball. Part II: Hardy-Sobolev and Lipschitz spaces. Math. Nachr. 268, 50–73 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Jaming P.: Harmonic functions on the real hyperbolic ball. Part I: boundary values and atomic decomposition of Hardy spaces. Colloq. Math. 80(1), 63–82 (1999)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Pavlović M.: Inequalities for the gradient of eigenfunctions of the invariant Laplacian in the unit ball. Indag. Math. (N.S.) 2(1), 89–98 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Pavlović M.: Decomposition of L p and Hardy spaces of polyharmonic functions. J. Math. Anal. Appl. 216, 499–509 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Ren G.: Harmonic Bergman spaces with small exponents in the unit ball. Collect. Math. 53, 83–96 (2002)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Ren G., Kähler U.: Radial derivative on bounded symmetric domains. Stud. Math. 157(1), 57–70 (2003)zbMATHCrossRefGoogle Scholar
  12. 12.
    Ren G., Kähler U.: Boundary behavior of Gleason’s problem in hyperbolic harmonic Bergman space. Sci. China 48A, 145–154 (2005)CrossRefGoogle Scholar
  13. 13.
    Ren G., Shi J.: Bergman type operator on mixed norm spaces with applications. Chin. Ann. Math. 18B, 265–278 (1997)MathSciNetGoogle Scholar
  14. 14.
    Rudin W.: Function Theory in the Unit Ball of \({\mathbb C^n}\). Springer-Verlag, New York (1980)zbMATHCrossRefGoogle Scholar
  15. 15.
    Stoll, M.: Invariant potential theory in the unit ball of \({\mathbb C^n}\). In: London Mathematical Society Lecture Note Series, vol. 199. Cambridge University Press, Cambridge (1994)Google Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  • Guangbin Ren
    • 1
  • Uwe Kähler
    • 2
    Email author
  • Jihuai Shi
    • 1
  • Congwen Liu
    • 1
  1. 1.Department of MathematicsUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Department of MathematicsUniversity of AveiroAveiroPortugal

Personalised recommendations