Complex Analysis and Operator Theory

, Volume 5, Issue 3, pp 671–681 | Cite as

C m -Approximation by Polyanalytic Polynomials on Compact Subsets of the Complex Plane



Several necessary and sufficient conditions on C m -approximability of functions on compact subsets of the complex plane by polyanalytic polynomials are obtained. The resulting conditions for approximation are of the topological nature.


Polyanalytic functions and polynomials Cm-approximation 

Mathematics Subject Classification (2000)

Primary 30E10 Secondary 30G30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Paramonov P.V.: Cm-approximations by harmonic polynomials on compact sets from \({\mathbb{R}^n}\). Russ. Acad. Sci. Sb. Math. 78(1), 231–251 (1994)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Paramonov P.V.: On approximation by harmonic polynomials in the C1-norm on compact sets in \({\mathbb{R}^2}\). Russ. Acad. Sci. Izv. Math. 42(2), 321–331 (1994)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Paramonov P.V., Fedorovskiy K.Yu.: Uniform and C1-approximability of functions on compact subsets of \({\mathbb{R}^2}\) by solutions of second order elliptic equations. Sb. Math. 190(2), 285–307 (1999)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Mergelyan S.N.: Uniform approximation to functions of a complex variables. Uspekhi Mat. Nauk (Russia Math. Surveys) 7(2), 31–122 (1952)MathSciNetGoogle Scholar
  5. 5.
    Carmona J.J.: Mergelyan approximation theorem for rational modules. J. Approx. Theory 44, 113–126 (1985)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Fedorovski K.Yu.: Uniform n-analytic polynomial approximations of functions on rectifiable contours in \({\mathbb{C}}\) . Math. Notes 59(4), 435–439 (1996)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Carmona J.J., Fedorovskiy K.Yu., Paramonov P.V.: On uniform approximation by polyanalytic polynomials and Dirichlet problem for bianalytic functions. Sb. Math. 193(10), 1469–1492 (2002)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Boivin A., Gauthier P.M., Paramonov P.V.: Uniform approximation on closed subsets of \({\mathbb{C}}\) by polyanalytic functions. Izv. Math. 68(3), 447–459 (2004)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Carmona J.J., Fedorovskiy K.Yu.: Conformal maps and uniform approximation by polyanalytic functions. Oper. Theory Adv. Appl. 158, 109–130 (2005)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Fedorovskiy K.Yu.: On some properties and examples of Nevanlinna domains. Proc. Steklov Inst. Math. 253, 186–194 (2006)CrossRefGoogle Scholar
  11. 11.
    Carmona J.J., Fedorovskiy K.Yu.: On the dependence of uniform polyanalytic polynomial approximation on the order of polyanalyticity. Math. Notes 83(1), 31–36 (2008)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Balk, M.B.: Polyanalytic functions. In: Mathematical Research, vol. 63. Academie Verlag, Berlin (1991)Google Scholar
  13. 13.
    Tarkhanov, N.N.: 1997 The analysis of solutions of elliptic equations. In: Mathematics and its Applications, vol. 406. Kluwer Academic Publishers, Dordrecht (1997)Google Scholar
  14. 14.
    Vitushkin, A.G.: Analytic capacity of sets in problems of approximation theory. Uspekhi Mat. Nauk, 22(6), 141–199 (1967) (Russian); in Russian Math. Surveys 22, 139–200 (1967)Google Scholar
  15. 15.
    Narasimhan, R.: Analysis on real and complex manifolds. In: Advanced Studies in Pure Mathematics, vol. 1. North-Holland, Amsterdam (1968)Google Scholar
  16. 16.
    Verdera J.: Cm-approximation by solution of elliptic equations and Calderon–Zygmund operators. Duke Math. J. 55(1), 157–187 (1987)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  1. 1.Moscow State Technical UniversityMoscowRussia

Personalised recommendations