Complex Analysis and Operator Theory

, Volume 5, Issue 3, pp 967–984 | Cite as

Extendability of Classes of Maps and New Properties of Upper Sets



We continue to study upper sets \({\widetilde{A}=\{(x,r)\in A\times R_+ :\exists y\in A\setminus\{x\}, r=|x-y|\}}\) equipped by hyperbolic metric. We define analogous of quasiconvexity, simply connectedness and nearlipschitz functions. We give a new definition of quasisymmetry as nearlipschitz characteristic on \({\widetilde{A}}\). In the final part in terms of upper sets we give the following extension property of \({A\subset R^2}\). For \({0\le\varepsilon\le \delta}\), each \({(1+\varepsilon)}\)-bilipschitz map f : AR 2 has an extension to a \({(1+C\varepsilon)}\)-bilipschitz map F : R 2R 2.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alestalo P., Trotsenko D.A., Väisälä J.: Isometric approximation. Isr. J. Math. 125, 61–82 (2001)MATHCrossRefGoogle Scholar
  2. 2.
    Alestalo P., Trotsenko D.A., Väisälä J.: Linear bilipschitz extension property. Sib. Math. J. 44(6), 259–268 (2003)CrossRefGoogle Scholar
  3. 3.
    Alestalo P., Trotsenko D.A.: Plane sets allowing bilipschitz extensions. Math. Scand. 105(1), 134–146 (2009)MathSciNetMATHGoogle Scholar
  4. 4.
    David G.: Hausdorff dimension of uniformly non flat sets with topology. Publ. Math. 48, 187b–225 (2004)Google Scholar
  5. 5.
    Heinonen J., Koskela P.: Quasiconformal maps with controlled geometry. Acta Math. 181, 1–61 (1998)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Pommerenke C.: Uniformly perfect sets and the Poincare metric. Arch. Math. 32, 192–199 (1979)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Trotsenko D.A.: Upper sets and uniform domains. Math. Rep. (Romanian Academy) 2(52), 553–562 (2000)MathSciNetGoogle Scholar
  8. 8.
    Trotsenko D.A.: Extension of nearly conformal spatial quasiconformal mappings. Sib. Math. J. 28(6), 966–971 (1987) (translated)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Trotsenko D.A.: Continuation from the domain and approximation of spatial quasiconformal mappings with a small distortion coefficient. Dokl. Akad. Nauk SSSR 270(6), 1331–1333 (1983) (Russian)MathSciNetGoogle Scholar
  10. 10.
    Trotsenko, D.A.: Approximation of space mappings with bounded distortion by similarities. Sib. Math. J. 27, 946–954 (1986) [translation from Sib. Mat. Zh. 27, No.6(160), 196–205 (1986)]Google Scholar
  11. 11.
    Trotsenko D.A., Väisälä J.: Upper sets and quasisymmetric maps. Ann. Acad. Sci. Fennicae Math. 24, 465–488 (1999)MATHGoogle Scholar
  12. 12.
    Väisälä J.: Bilipschitz and quasisymmetric extension properties. Ann. Acad. Sci. Fenn. Math. 11, 239–274 (1986)MATHGoogle Scholar
  13. 13.
    Väisälä J., Vuorinen M., Wallin H.: Thick sets and quasisymmetric maps. Nagoya Math. J. 135, 121–148 (1994)MathSciNetMATHGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  1. 1.Institute of Mathematics SO RANNovosibirskRussia

Personalised recommendations