Advertisement

Complex Analysis and Operator Theory

, Volume 6, Issue 1, pp 275–300 | Cite as

Bedrosian Identity in Blaschke Product Case

  • Paula Cerejeiras
  • Qiuhui Chen
  • Uwe KaehlerEmail author
Article

Abstract

This paper offers a characterization of amplitude functions in \({L^2(\mathbb R)}\) satisfying the Bedrosian identity in the case that the phase functions are determined by the boundary value on the unit circle of finite Blaschke products.

Keywords

Hilbert transform Fourier transform Generalized Sinc function Ladder shaped filter Vandermonde matrix Bedrosian identity 

Mathematics Subject Classification (2000)

42A38 44A15 62P30 65R10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bedrosian E.: A product theorem for Hilbert transform. Proc. IEEE 51, 868–869 (1963)CrossRefGoogle Scholar
  2. 2.
    Boashash B.: Estimating and interpreting the instantaneous frequency of a signal. I. Fundamentals. Proc. IEEE 80, 417–430 (1992)Google Scholar
  3. 3.
    Cerejeiras P., Chen Q., Kaehler U.: A necessary and sufficient condition for the Bedrosian identity. Math. Method Appl. Sci. 33(4), 373–562 (2010)Google Scholar
  4. 4.
    Nuttall A.H.: On the quadrature approximation to the Hilbert transform of modulated signals. Proc. IEEE 54, 1458–1459 (1966)CrossRefGoogle Scholar
  5. 5.
    Picinbono B.: On instantaneous amplitude and phase of signals. IEEE Trans. Signal Process. 45(3), 552–560 (1997)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Qian T.: Characterization of boundary values of functions in Hardy spaces with applications in signal analysis. J. Integral Equ. Appl. 17(2), 159–198 (2005)zbMATHCrossRefGoogle Scholar
  7. 7.
    Qian T., Xu Y., Yan D., Yu B.: Fourier spectrum characterization of Hardy spaces and applications. Proc. Am. Math. Soc. 137(3), 971–980 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Yu B., Zhang H.: The Bedrosian identity and homogeneous semi-convolution equations. J. Integral Equ. Appl. 20(4), 527–568 (2008)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of AveiroAveiroPortugal
  2. 2.School of InformaticsGuangdong University of Foreign StudiesGuangzhouPeople’s Republic of China

Personalised recommendations