Complex Analysis and Operator Theory

, Volume 4, Issue 2, pp 159–178 | Cite as

Commutator Estimates for Interpolation Scales with Holomorphic Structure

  • Ming FanEmail author


The main result of this paper is some quantitative estimates for nonlinear commutators under the complex interpolation methods and more general interpolation scales with holomorphic structures. We also investigate the spectral behaviour of bounded linear operators under this kind of interpolation methods.


Homomorphic structure Interpolation Commutator Mixed reiteration Spectrum 

Mathematics Subject Classification (2000)

Primary 46B70 46M35 Secondary 47A10 47B47 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albrecht, E.: Spectral interpolation. In: Operator theory: Advances and applications, vol. 14, pp. 13–37. Birkhäuser, Basel (1984)Google Scholar
  2. 2.
    Albrecht E., Müller V.: Spectrum of interpolated operators. Proc. A. M. S. 129, 807–814 (2001)zbMATHCrossRefGoogle Scholar
  3. 3.
    Albrecht E., Vasilescu F.-H.: Stability of the index of a semi-Fredholm complex of Banach spaces. J. Funct. Anal. 66, 141–172 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bastero J., Milman M., Ruiz F.J.: On the connection between weighted norm inequalities, commutators and real interpolation. Mem. Am. Math. Soc. 154(731), 1–80 (2001)MathSciNetGoogle Scholar
  5. 5.
    Bergh, J., Löfström, J.: Interpolation Spaces, Grundlehren Math. Wiss., vol. 223. Springer, Berlin (1976)Google Scholar
  6. 6.
    Carro M.J., Cerdà J., Milman M., Soria J.: Schechter methods of interpolation and commutators. Math. Nachr. 174, 35–53 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Cwikel M.: Real and complex interpolation and extrapolation of Banach spaces. Duke Math. J. 2, 333–343 (1992)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Cwikel M., Kalton N., Milman M., Rochberg R.: A unified theory of commutator estimates for a class of interpolation methods. Adv. Math. 169, 241–312 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Fan M., Kaijser S.: Complex interpolation with derivatives of analytic functions. J. Funct. Anal. 120, 380–402 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Fan M.: Lions-Peetre’s methods of complex interpolation and some quantitative estimates. J. Approx. Theory 140, 46–60 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Jawerth B., Rochberg R., Weiss G.: Commutators and other second order estimates in real interpolation theory. Ark. Mat. 24, 191–219 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Krugljak N., Milman M.: A distance between orbits that controls commutators estimates and invertibility of operators. Adv. Math. 182, 78–123 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Nelson E.: Notes on non-commutative integration. J. Funct. Anal. 15, 103–116 (1974)zbMATHCrossRefGoogle Scholar
  14. 14.
    Pisier G.: The operator Hilbert space OH, complex interpolation and tensor norms. Mem. Am. Math. Soc. 122(585), 1–103 (1996)MathSciNetGoogle Scholar
  15. 15.
    Rochberg R., Weiss G.: Derivatives of analytic families of Banach spaces. Ann. Math. 118(2), 315–347 (1983)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Saxe K.: Compactness-like operator properties preserved by complex interpolation. Ark. Mat. 35, 353–362 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Taylor J.L.: A joint spectrum for several commuting operators. J. Funct. Anal. 6, 172–191 (1970)zbMATHCrossRefGoogle Scholar
  18. 18.
    Taylor J.L.: The analytic-functional calculus for several commuting operators. Acta Math. 125, 1–38 (1970)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2009

Authors and Affiliations

  1. 1.Department of EngineeringDalarna UniversityBorlängeSweden

Personalised recommendations